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OSCILLATIONS OF GAS BUBBLES GENERATED
BY UNDERWATER EXPLOSIONS

Karel Vokurka

1. INTRODUCTION

Examination of data obtained in experiments with gas bubbles generated by
underwater explosions carried out in previous study [1] has indicated several
interesting facts regarding the bubble behaviour. The questions raised concern, for
example, the value of the bubble oscillations amplitude, the amount and the nature
of energy losses, and the extent of validity of the bubble model.

As one can assume that other bubbles, such as cavitation, spark, and laser generated
bubbles behave in much the same manner it was deemed worthwhile to examine the
problem in greater depth. For this purpose the data published by Arons et al. [2]
and Arons and Yennie [3] that have already been examined in reference [1] are
supplemented by some additional facts from works [4, 5] and an improved bubble
model is used to interpret the experimental data. It is hoped that in this way a more
complete picture of the phenomena will be obtained.

For the problem under examination the selection of a suitable bubble model is
in many respects crucial, because the processes associated with the early stages of
explosions, such as detonation and shock waves, are highly complex. Yet, in spite
of great theoretical and experimental efforts (see, e.g. references [6~15]), not all the
aspects of the phenomena have been fully elucidated to date. In addition, the theoreti-
cal computations are usually based on a finite difference form of the governing dif-
ferential equations [6—10], which means that large amounts of computing time are
required to solve them.

As the emphasis in this work will be on the later stages of bubble oscillations the
model can be substantially simplified and hence large savings in computing time will
be achieved. However, as a consequence of this simplification the detonation proces-
ses and the shock waves cannot be adequately dealt with.

The layout of the present work is as follows: in the next section a suitable bubble
model will be specified. The results obtained with this model will be compared with
experimental data in Section 3. Finally, in Section 4 energy partition in underwater
explosions will be discussed.
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2. PROBLEM FORMULATION

Let a spherical charge of a radius R,,, detonate in water. The exothermal reaction
in the explosive will produce gases of very high pressure and temperature. When
the detenation wave reaches the charge-liquid interface a shock wave radiates into
the water and the products of explosion (gas bubble) start expanding. During the
expansion phase the bubble grows to a maximum radius, R, and then performs
several damped oscillations around its equilibrium radius, R,.

For further work it is convenient to introduce a system of non-dimensional
variables. In ihis paper we shall use the expansion W system of variables, in which
the non-dimensional time, bubble radius, energy, pressure at the bubble wall, and
pressure in the liquid at a point r are defined as [16]

by = t/[Rmo(Qw/poo)llz] , W= R/Rmo , E,= E/Epmo >
P* = P[p,, Puw=[(p/p.) = 1] (r[Ruo) -

Here ¢, is the density of the undisturbed liquid, p, the ambient pressure in the
liquid, and E,,¢ = 47p,R3, the minimum potential energy of the liquid.

The bubbles generated by explosions belong to a class of gas bubbles which are
characterized by the fact that excitation for free oscillations is achieved by increasing
their energy [17]. A general analysis of such bubbles was given in [16] where the
computations of the bubble wall motion were performed with Gilmore’s equation
(see Appendix A for the definition of Gilmore’s model) and on the assumption of
an ideal gas in the bubble interior that undergoes adiabatic changes and of a uniform
pressure field. In such a case the pressure at the bubble wall varies as [16]

(1) p* =P;<40W—3y’

where P}, is the initial maximum gas pressure at a time t,, = 0 and y is the ratio
of specific heats.

As mentioned above, one of the objectives of this work is to compare an improved
bubble model with experiments. The energy relations necessary for this purpose
are summarized in Appendix B, and experimental data on bubble oscillations given
in [2—4] are summarized and transformed into the non-dimensional form in
Appendix C.

Let us first examine how far the simple model discussed in [16] is appropriate
for explosion generated bubbles. For example, the first maximum bubble wall
radius as determined in experiments is given by equation (C3). For shallow explosions
or laboratory tank experiments we may put p,, = 100 kPa and thus obtain from
equation (C3) that Wy, = 29-4. This value can be directly confronted with the
scaling functions Wy = Wy (Piyo, 7) given in [16]. It will be seen that for y = 1-25
[4] and W, = 29-4 the corresponding initial pressure equals Py, = PyoPo =
= 1-2 GPa.

The first expansion time T,,,; can be evaluated in the same manner. From equation
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(Cs) it follows for p,, = 100 kPa that T,,,; = 29-2(T,,., = Too1/2, T, is the period
of the first bubble oscillation), and from the graph T,,,; = T,.,(Pko, y) it can be seen
that the corresponding initial pressure is Pyo = Pyop,, = 133 GPa (y = 1-25).

Finally, the energy released by the explosion is given by equation (C12). For
P« = 100 kPa one obtains that E, ., = 67 200. Assuming that this energy equals the
initial internal energy of gaseous products, E,,,,, it follows from equation (B2) that
for y = 1:25 the initial pressure is Py, = Pjyop., = 1-6 GPa.

All these initial pressures are much lower than the pressures usually considered
for TNT [4, 5]. This finding, however, is not surprising. As said above, the model
used in [ 16] assumed an ideal gas and a uniform pressure field in the bubble interior,
which is obviously not true during the early stages of the explosion. For example,
when the detonation wave reaches the interface, the gas has a density equal to that of
the original solid explosive and hence can hardly be treated as an ideal gas. Similarly,
due to a complex wave system the bubble interior is far from being homogeneous at
that time [6].

To obtain better results a more realistic equation of state for the gas is necessary.
In this work we shall use the two-gamma approximation suggested by Epstein [18].
In this case the pressure equation (1) is replaced by the relation

@ P* = PLWS 4 PoW
and at a first approximation the internal energy of the gas can be written as
*7 %
(3) E,;, = __EW_O w301 Py w30 -1)
'}), -_— 1 ,y/r _ 1

Here y" = 3 and y" = 1-25 [18].
If W= W,, = 1 we obtain from equations (2) and (3) that
(4) P:m:P;’o"'P;%’
and
Pi . Phh

’yl_l Y”"‘l.

(5) E, o=

For given Py, and E,, the equations (4) and (5) can be solved to yield P,
and Py A further obvious requirement on the parameters P¥, and P, is that the
quantities computed from the equation of motion fit the experimental data with
reasonable accuracy.

Some of the experimental data suitable for comparison have been mentioned
earlier (Wyy, T,,e1» and E, ;o). Another quantity of interest is the amplitude A,
which was determined in [1] both from the peak pressure p,; (4, = 2+05) and from
the time of the first bubble oscillation T,; (4, = 2:02). These two amplitudes cor-
respond to the ambient pressure p, = 1:62 MPa. The quantities Pp1 and T,; can
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also be used in this context. Their values in the expansion system and for p,, = 1-62
MPa are (equations (C5) and (C8)) T,,,; = 230 and p,,,; = 87-4. Finally, a quantity
that can also be used is the acoustical energy associated with the first bubble pulse.
This energy equals (equation (C10)) E,;, = 502.

3. RESULTS OF COMPUTATIONS

To fit all the experimental data mentioned as best as possible a number of trial
computations were carried out with Gilmore’s model for different values of P,
and Pjj;. In selecting the value of these parameters two approaches were adopted:

(i) The initial internal energy was assumed to be E,;, = 67 200 (p,, = 100 kPa)
and for a selected value of Py, the pressures Py, and Py, were determined from
equations (4) and (5).

(ii) The selection of the parameters Py, Py, and Pjf, was partially guided by the
equation of state data for detonation products computed by Kuznetsov and
Shvedov [19] (for ¢, = 1:6 x 10° kgm™3).

The initial pressures and energies determined in this way are given in Table I.
Using the values from Table I the equation of motion (A1) was solved for ambient
pressures p,, = 100 kPa and p,, = 1-62 MPa. With regard to available experimental
data the computations were terminated at Wy, in the first case and at Wy, in the
second case. The results of computations and the corresponding experimental data
are summarized in Tables II and III.

Table 1. Values of the initial pressures and energies used in computations. The values of the
energy E,, ;o correspond to the ambient pressure p,, = 100 kPa.

Prro [GPa] 6 12
Piro [GPa] 4937 10-75
Pio [GPa] 1-063 125
Epio [—] 67 200 103 750

Table II. Comparison of theoretical and experimental data determined for the ambient
pressure p. = 100 kPa.

Theoretical values

Experimental
data
Pypo = 6 GPa Pyo = 12GPa
Wiy 29-29 30-87 29-35

4, 2:47 2:49 —
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Table I1I. Comparison of theoretical and experimental data determined for the ambient
pressure p,, = 1-62 MPa.

Theoretical values

Experimental
data
Pyro = 6 GPa Pypo = 12 GPa

Wit 11-06 11-67 11-62
A4 1-96 1-98 2:02—2-05
W1 2-13 2:20 —
Tot 21-97 23-10 230
Pupt 87-1 98-2 87-4
Wy 9-46 9:93 79

From Tables I, II, and III several important conclusions can be drawn. First,
it can be seen that there is relatively strong agreement between theory and experiment
up to the first minimum radius W,,,. However, there is a large difference as far as
the value of W)y, is concerned. This difference is due to the energy losses that were
not taken into account in the theoretical model. An interesting result is that the value
of p,,,1 (and hence also of W,,) does not seem to be substantially affected by these
losses. This would indicate that the kinetic energy of the liquid was almost fully
transferred into the internal energy of the gas. However, it does not seem as if all
the internal energy of the gas was transferred during the expansion phase back into
the kinetic or even later into the potential energy of the liquid [20].

Second, though during explossions large amounts of energy are released and high
initial pressures generated, the bubbles are excited to oscillate only with moderate
amplitudes (4, < 2-5). Hence, with the exception of the early phases relatively
simple bubble models can be used to obtain satisfactory results. Also, the predictions
given in [16] regarding the maximum amplitude, 4, that can be achieved in the
expansion system, are thus confirmed.

Third, the bubble behaviour at the later stages seems to be influenced only little
by the initial conditions. For example, a comparison of the data in Tables II and III
shows that doubling the initial pressure P,;, has little influence on the later bubble
histories. This is a consequence of the fact that an increase in the initial energy is
almost fully compensated for (from the point of view of the bubble oscillations)
by an increase in energy radiated in the shock wave.

4. ENERGY PARTITION
Let us now examine the energy partition in underwater explosions. The results
presented here are based on computations with the initial pressure Py, = 6 GPa

and ambient pressure p,, = 1-62 MPa. The respective energies can be found by means
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Table IV. Energy partition at the time of the first and second maximum bubble radius.
Do = 162 MPa.

Results based Resulis based Energy partition
w E, on computed on measured determined
radii radii in reference [9]
-] [%] -1 %] [calg™'] %]
W= W, E, .0 4148 100 4148 100 1050 100
E,; 433 10°5 417 10 95 9
W= Wy 4E,, 1350 32-5 1568 37-8 385 367
E, . 2365 57 2163 522 570 543
E,; 486 12 557 13-4 60 57
AEwp 847 20 492 11-8 120 11-4
W= Wy, 4E,,, 2815 68 2665 643 690 658
Epbp 450 11 502 12-1 120 11-4
AE 4, 0 0 434 105 180 17-1

of the data given in Tables I and III and the equations (3), (5), (B5)—(B9), and (C11).

The energy partition data determined in this way are summarized in Table IV.
The first column corresponds to energies calculated using the theoretical radii Wy,
and Wy, (these quantities are given in the first column in Table III). The second
column in Table IV is based on measured values of Wy, and Wy, (the third column
in Table II). For comparison, the third column in Table IV contains energy partition
data found by Arons and Yennie [3] and Arons [21]. For easier identification in the
source works these data have been left in original units (cal g™ *).

Though Arons and Yennie [3] and Arons [21] used a different approach, their
energy partition for W = W), is very close to the results arrived at in this work (the
results based on experimental data). Let us only note that due to a slight difference
in the values of g, and @ their initial energy is not exactly the same as that given here
(Arons and Yennie [3] use normalized energies E, = E/G, which are related to the
expansion variables by a relation E,, = E, ¢,/p,; here G is the weight of the charge).

A more pronounced difference in energies determined for W = W,,, should be
attributed to the ways the internal energies are calculated in the two works. The
method of Arons and Yennie is based on the formula

(6) Ery = Eqy(T,/T,1)?

in which E4; and Er, are the total energies (E, = E p + Ejpy Eppy is the maximum
potential energy and E,,, minimum internal energy, see Appendix B) associated with
the first and second oscillations, and T,,, T,, the times of the first and second oscilla-
tions, respectively. \
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Equation (6) represents a simplified version of the exact formula [1]
(7) Eppz = Eppgi(Rapa/Rors)? .

If the ratio of the maximum radii is substituted by the ratio of the oscillation times,
a minor error ~0-98° is introduced [1]. However, if the potential energies are sub-
stituted by the total energies, quite erroneous results can ensue, because the internal
energies are of the same order as the potential energies (cf. Table v).

It is difficult to give a source for the 10-5% dissipated unaccounted energy. In the
literature various causes are suggested: (1) turbulence induced in the water surrounding
the bubble [3, 4], (ii) loss of the gas from the main bubble in the form of micro-
bubbles [3, 22], (iii) gas cooling in the protuberances [23], and (iv) internal con-
verging shocks [24]. Evidently, further experiments are needed to solve this question.

« 5. CONCLUSION

Oscillations of gas bubbles generated by underwater explosions were examined
in detail. It was found that the theoretical model agrees with experiments in an interval
(0, T,;). For times t > T,, large energy losses, not accounted for by the model,
occur. The nature of these losses has not been clarified yet. Among possible candidates
are turbulence, heat and gas losses from the bubble, and converging shocks in the
bubble interior.

The early stages of explosions are highly complex and no attempt was undertaken
to analyze them. Here the simple two-gamma model was used to bridge this phase.
However, it should be emphasized that any detailed physical interpretation of the
quantities Py and 7 is tenuous at best and they should be regarded rather as para-
meters affording a useful fit of simplified theory to experimental results [3].

Examination of the experiments [3, 4] reveals two important facts regarding the
bubbles oscillating with amplitudes 4; < 2-5. First, though the bubble walls may
exhibit large deformations and sharp irregularities (protuberances) at the first mini-
mum volume and at later times, the bubbles are stable and do not break up. Second,
the pressure vs time records of the bubble pulses never contain jumps that could be
ascribed to the shock front.
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APPENDIX A.
GILMORE’S MODEL

In Gilmore’s model the equation of motion for the bubble wall has the form (for
the dimensional form see, e.g. references [1, 25])

(A1) WW(1 — W|C*) + 3WX(1 — 3W|C¥) =
= H*(1 + W/C*) + (W/C¥) H*(1 — W|C¥),
where the velocity of sound in the liquid at the wall, C*, equals
(A2) C* = ci[(P* + B*)|(1 + B¥)]®~1i2n
and the enthalpy change between pressures P and p,, is given by
(A3)  H*=(n—1)""n(l + B¥ {[(P* + BY|(L + B¥]"" D — 1},

Here ¢}, = ¢(0w/P.)*/? is the velocity of sound in the undisturbed liquid, and
B* = B|p.,, n are constants in the Tait equation of state for the liquid. For water,
which we consider here, ¢, = 1450 ms™!, B = 300 MPa, n = 7, and ¢, = 10°
kg m~3. The dots in equation (A1) denote differentiation with respect to time.

The peak pressure in the bubble pulse can be conveniently computed from a simple
formula [20]

(A4) Pupt = Woi(Pagy — 1)

APPENDIX B.
ENERGIES IN THE EXPANSION SYSTEM

The energy relation in the expansion system can be written as [17, 20]
(B1) 4E,; = E,; + 4E,, + AE,,,

where the initial internal energy of the ideal gas (referred to infinite adiabatic
expansion) equals

(B2) Eyio = Papol(y = 1).

For a wall position W the internal energy is

(B3) E, = Phio_ w—30-1)
1 'y _ 1

and hence the change in the internal energy can be written as

wi

*
(B4) AE,; = E,;o — E,; = _I_JM_OI [1 - W—S(y—l)].
'y —
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The change in the potential energy of the liquid is given by
(BS) AE,, = W? - 1.
Finally E,;, and AE,, designate the kinetic and dissipated energy, respectively.

When W= W, and W = W, it can be assumed that the kinetic energy E,; = 0.
Energy associated with a shock wave can be determined from a relation

(B6) E, 4 = AE,; — AE,,,

where AE,; and AE,,, are evaluated for W= W,,. Similarly, theoretical energy
associated with the first bubble pulse is

(B7) Ewbp = AEwi - AEwp - Ewsh

where AE,; and AE,, are evaluated for W= W,,, and E,, is given by equation
(B6). Then the total acoustical energy radiated up to Wy, is

(B8) AEwa = Ewsh + Ewbp .

In the case of experimental data the energy of the first bubble pulse is given by
equation (C10). Then the unaccounted energy dissipated between Wy, and W,
equals

(B9) AEwdu = AEwi - AEwp - AEwa s

and the energies are evaluated from experimental data now.

APPENDIX C.
EXPERIMENTAL DATA [1—4]

In research of underwater explosions with TNT charges it was established that
the first maximum bubble radius, Ry, the weight of the charge, G, and the ambient
pressure, p,, are related by a formula

(C1) Ry = 724 (G/p,)"* [m, kg, Pa].
The weight of the spherical charge equals
(C2) G = 4nR..0. [kg, m, kgm™°],

where g, is the density of the explosive. In the case of TNT the density is g, = 16 x
x 10*kgm™3 [5]. Then upon substituting equation (C2) into relation (C1) we
obtain

(C3) Wiri = Rygi/Rumo = 1366/(p,)'/3 .
It was also found that the period of the first bubble oscillation is
(C4) T,, = 4576 G'*|(p,,)*'® [s, kg, Pa].
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Again, using equation (C2) we obtain for water that

(CS) Twol = nl/[RmO(Qoo/poo)llz] = 2710/1’%3 .

The formulae (C1) and (C4) were verified for a large extent of ambient pressures.
The measured peak pressure in the first bubble pulse was

(C6) Pp1 = 827 x 105 [Pa],
where the measurement was performed at a point
(c7) r=113G"® [m,kg],

and the ambient pressure was p,, = 162 MPa. Then using equation (C2) the non-
dimensional peak pressure equals

(C8) pwpl = (ppl/poo - 1) r/RmO = 874.

Finally, the acoustical energy flux in the first bubble pulse determined at the
point  and for p,, = 1-:62 MPa was

(C9) Fy =317 x 10° G* [kgs~2, ke] .
Hence the energy carried away by the first bubble pulse equals (E,,o = $7p,R50)
(C10) E,,, = 41r? FyJE, o = 502.

The last experimental datum that can be used here concerns the energy released
by the explosion. In non-dimensional form this energy equals

(Cll) Eyeo = O G/Epmo =0 Qe/poo p

where Q is the detonation energy per 1 kg of the explosive. In the case of TNT the
detonation energy is Q = 42 MJ kg~! [5]. Thus one obtains

(C12) Epuo = 672 x 10%/p., .

OSCILLATIONS OF GAS BUBBLES GENERATED BY UNDERWATER
EXPLOSIONS

A simple yet reasonably accurate model of gas bubbles generated by underwater explosions
is presented. The results obtained with this model are compared with experimental data. Finally
the energy partition problem in underwater explosion phenomena is examined. It is shown that
the theoretical model agrees with experimental data up to the first bubble minimum volume. At
later stages unaccounted energy losses cause a large deviation of the model from experiments. It
is assumed that the conclusions drawn here can be applied to other kinds of bubbles, such as
cavitation, spark, and laser generated bubbles.
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