
Journal ofSound and Vibration (1989) 135(3),399-410 

FREE OSCILLATIONS OF A CAVITATION BUBBLE 

K. VOKURKAt 

Department of Physics, Faculty of Electrical Engineering, Czech Technical University, 
Suchba’tarova 2, CS-166 27 Praha 6, Czechoslovakia 

(Received 6 September 1988, and in revised form 30 March 1989) 

A cavitation bubble model based on a recently described vapour bubble model is 
presented. By using the model, significant bubble wall positions and related quantities are 
computed. Experimental data on cavitation bubbles as published in the literature are 
evaluated and compared with the theoretical results. It is found that, in agreement with 
an assumption made, at later times the cavitation bubbles behave similarly to spark- and 
laser-generated bubbles. The difference in the computed and measured values of the 
cavitation bubble damping factors are interpreted as extra energy losses. The mechanism 
of these losses is, however, still unclear. Possible origins of the losses are suggested. 

1. INTRODUCTION 

When the pressure in a real liquid is reduced below a certain critical value, the liquid 
begins to evaporate into ever-present nuclei, thus forcing them to grow. After the pressure 
has been re-increased above the critical value, the vapour bubbles formed around the 
nuclei begin to collapse and perform several damped free oscillations. This phenomenon 
is called cavitation and has many important consequences for fluid engineering [l]. 

In this paper the behaviour of a single spherical cavitation bubble oscillating in a liquid 
far from boundaries is analyzed. For this purpose a simple yet sufficiently accurate bubble 
model is introduced. To simplify the theoretical analysis further, only medium-sized 
bubbles are considered, for which the size-dependent effects such as gravity, surface 
tension, viscosity and heat conduction can be neglecte.1. (Whereas omission of gravity, 
surface tension and viscosity from the analysis is fully justified in the case of experimental 
cavitation bubbles, this unfortunately cannot be said about heat conduction.) The experi- 
mental data published by Knapp and Hollander [2], Chesterman [3], Schmid [4], Gallant 
[5], Blake et al. [6], Fujikawa and Akamatsu [7], and Bark and van Berlekom [8] are 
evaluated and compared with the theoretical results. 

2. CAVITATION BUBBLE MODEL 

Let a spherical cavitation nucleus of a radius R, be exposed at a time t = 0 to an 
instantaneous pressure reduction Ap. If the initial ambient pressure in the liquid is denoted 
as pmi, then the new ambient pressure will be pwcd = pwi - Ap. Let us assume that pad < PO, 
where P, is the liquid vapour pressure for a given liquid temperature. Due to the pressure 
reduction mentioned above the liquid begins to evaporate into the nucleus, thus keeping 
the pressure inside the nucleus equal to P,. However, as the pressure inside the nucleus 
is larger than the ambient pressure pad, the nucleus starts to grow. (Here we assume only 
moderate pressure reductions Ap so that evaporation keeps pace with the nucleus growth.) 
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Let the pressure reduction last for a time AT (the so-called driving phase). During the 
interval AT the nucleus steadily grows and converts into a visible vapour bubble. At the 
same time the surrounding liquid acquires kinetic energy. At a time t = AT let the ambient 
pressure be raised to a value p,( > P,.. As a consequence the rate of the bubble growth 
slows down. However, the bubble still continues to grow until the kinetic energy of the 
liquid (aquired during the driving phase) is expended in working against the pressure 
difference pXC. - P,. The bubble wall motion stops at a maximum radius, R,+, , . During 
this prolonged growth evaporation of the liquid into the bubble interior continues because 
the bubble expansion causes the pressure at the bubble wall, P, to drop below the value 
of P,,. Hence it can be assumed that for the whole growth phase P = P,. The growth phase 
lasts a time T,. 

After reaching the maximum radius, RM,, the bubble wall motion reverts and the 
bubble enters a phase known as the bubble collapse. At the beginning of the collapse 
phase, which lasts a time T,., condensation manages to maintain the equality P = P,. 
However, as the wall velocity increases, condensation ceases to keep pace with the wall 
motion and the vapour remaining in the bubble starts to behave as a non-condensable 
gas. The pressure increase in the compressed vapour will eventually stop the inward wall 
motion at a minimum radius, R,,; the wall motion then reverts and the bubble enters a 
phase known as the rebound phase. During the resound phase the bubble grows to a 
maximum radius R,,,,, and then again collapses. The collapse and rebound phases recur 
several times during the bubble life. 

As shown in reference [9] the bubble wall motion can often be described with sufficient 
accuracy by the modified Herring’s equation 

(1) 

Here R is the bubble radius, pl- is the liquid density, pr is the time-varying ambient 
pressure, c,, is the speed of sound in the liquid, and the overdots denote differentiation 
with respect to time. 

As discussed above, it is assumed that during the growth phase the pressure at the 
bubble wall equals the vapour pressure: 

P = P,. 

For the driving phase (0 =S t S AT) equation (1) has a simple solution [lo], 

(2) 

which for R larger than a few nucleus radii R, can be simplified by omitting the second 
term in the square brackets. 

The bubble collapse and rebound can be conveniently described by a simple model 
given in reference [ll]. In this model, for wall velocities lower than a certain transition 
velocity, d,, the bubble is assumed to behave as an ideal uapour bubble (at which 
condensation and evaporation take place at an infinite speed), and for wall velocities 
higher than dup, as an ideal gas bubble (at which condensation and evaporation are zero). 
Hence one can write 

(4) 

Here R,, is the radius at which the bubble changes its behaviour, and y is the polytropic 
exponent of the vapour. The values of the transition velocity and of the polytropic 
exponent then determine the intensity of bubble oscillations. 
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An oscillating bubble radiates pressure waves into the surrounding liquid. The pressure 

wave, P., at a point in the liquid, r, can be determined to a first approximation by a 
simple formula (r >> R) 

pa =(P-pW+ipK,k’)R/r. (5) 

The cavitation bubble model presented here is thus given by equations (l), (2), (4) and 
(5). To solve these equations it is sufficient to know (in addition to the physical constants) 
just the form of the variable ambient pressure p,(t). Note that equation (1) could be 
easily replaced by a more sophisticated equation of motion, such as Gilmore’s. However, 
in this paper the intensity of cavitation bubble oscillations will be assumed to be such 
that no substantial improvements in the model performance would be obtained. 

The reader is recommended to compare this cavitation bubble model with a similar 
model of spark- and laser-generated bubbles given in reference [ 121. The latter model is 
also based on the vapour bubble equation (4). However, an important distinction (in 
addition to the form of the pressure p&t)) is in the equation describing the pressure at 
the bubble wall during the bubble growth (equation (2)). Thus by connecting the vapour 
bubble equation (4) with a suitable equation for the growth phase either the cavitation 
bubble model or the spark- and laser-generated bubble model were obtained. It should 
be also noted that in the literature often no distinction is made between these bubbles, 
all being called cavitation bubbles. Oscillations of these bubbles are then usually computed 
for wall motions beginning at the first maximum radius R,+,,, and this unfortunately is 
done even in those situations where inclusion of earlier bubble histories in computations 
could provide very valuable information. It is hoped that introduction of the complete 
model here could help to overcome the traditional approach. 

3. RESULTS OF COMPUTATION 

Before starting computations it is convenient to introduce the non-dimensional system 
of Y-variables: 

t_y = tl[Rn(peJPmi)“‘l, Y= R/R,, P* = PIPCC,, 

P,,~ = (pJpmj)rlR,, cz = Cn(pmlPm,)“Z. 

Computations will be performed for the following values of the physical constants 
(water under ordinary laboratory conditions): 

pmi = 100 kPa, pm = lo3 kg me3, c, = 1450 m s-‘, 

P, = 2 kPa, Id,,] = 6 m ss’, y = 1.25. 

Here the values of the transition velocity, dug, and of polytro;>ic exponent, y, were 
determined in reference [ 1 l] by comparison of calculated and measured peak pressures 
in the bubble pulses, the experimental data originating from spark-generated bubbles. 
Using these values in this paper then implies that the same intensity of oscillations is 
assumed both for spark-generated and cavitation bubbles. 

An example of the computed bubble wall motion time history is displayed in Figure 
1, and of the radiated pressure wave in Figure 2. The computed significant bubble wall 
positions are given in Table 1. From the computed significant bubble wall positions a 
number of related quantities were determined: these are summarized in Table 2. computa- 
tions were performed by using the normalized form of equations (l), (2), (4) and (S), 
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Figure 1. Computed time history of the cavitation bubble wall motion. T,,,, time of the driving phase; r,,, 
time of the bubble growth; T,, l, time of the first bubble collapse; r,, , , time of the first bubble rebound. 
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Figure 2. Computed pressure wave radiated by an oscillating cavitation bubble. 

TABLE 1 

Computed signijicant bubble wall positions qf’ the cavitation bubble 

Y,, yv, I YR$,, Y:', Y ,,,I Y:,2 y:,, Y,,, y:,, y:, Y,,2 y:i y:,, Y&,3 

I 34.42 29.74 IO.48 1.06 10.48 21.08 24.40 21.0s 7.43 0.75 7.43 14.94 17.30 

TABLE 2 

Computed significant bubble wall positions, amplitudes of oscillations, peak pressures in the 
bubble pulses, and damping factors of the cavitation bubble 

0.86 3.29 0.03 167 2.33 0.86 0.71 0.86 3.29 0.03 167 2.33 0.86 0.71 
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and for the ambient pressure change shown in Figures 1 and 2, where A TV = 50, Ap* = - 1.5 
and pzi=p,$,= 1. 

In Table 1, Y,,, denotes the maximum bubble radius, Yup the “transition” radius, Y, 
the equilibrium radius (determined from the condition that P* = pzc when Y = Y,) and 
Y,,, the minimum radius. The quantities belonging to the collapse phases are denoted by 
two primes and those belonging to the rebound phases by one prime. 

The quantity YM, will be referred to as the growthfactor. It represents the size that the 
bubble attains during the growth phase. The value of the growth factor is determined by 
the form of the ambient pressure change p,(t). For particular experimental conditions 
it is a constant. In real liquids the size of nuclei is usually of the order of 10mh m and the 
size of cavitation bubbles of the order of lop3 m. Hence the typical growth factor is of 
the order of 103. (For practical reasons a much smaller growth factor was selected for 
the example.) 

For easier interpretation of the results some quantities in Table 2 are given in the 
Z-system of the non-dimensional variables. These are the radii Z&, = R&,/Rhr,, Z&2 = 
RIg2/R~MZ,Z~~2=RI:gZlR~MZ,Z~g3=R~g3/RM3rZmI=Rm~lRhl1,Zml=R~~lR~z,~~~~~e 
peak pressures in the bubble pulses pzp, = (P%, - l)Z,,,, , and pzp2 = ( Pzf2 - 1 )Z,,,, . (Here 
PL is the maximum pressure at the bubble wall: i.e., PL = P~(Z,,/Z,,,)“.) 

The amplitudes of the bubble oscillations, A, are defined in the following way: A; = 

RdRL, A; = RMZI R&, A,” = RM2/RrN2 and AI, = RM3/R:,. Similarly, the damping fac- 
tors, (Y, are defined as follows: LY, = Rbf2/RM,, a2 = R,,IR,,. 

Note that the rebound amplitudes, Ai, A:,. . . , represent the amplitudes for which the 
bubble would be excited, if it were a gas bubble. These amplitudes are in essence 
determined by the maximum pressures, PL. However, due to the collapse mechanism 
the collapse amplitudes A;I, A;, . . . , are larger than the rebound ones. Note also that 
for the computational model considered it holds that AS = Aj =. . . , A; = At =. . . , 
(Y,=cx~=..., P&,=PLI=..., prp,=pzpr=.*., Z&,=Z&,=Z&2=..., and Znl,= 
zm2=. *. . As could be expected (because of the same vapour bubble model employed), 
these results are the same as those obtained for spark- and laser-generated bubbles. For 
a more detailed discussion of these relations the reader is therefore referred to the earlier 
paper [ 121. 

4. EVALUATION OF EXPERIMENTAL DATA 

In this section it is intended to evaluate some of the experimental data found in the 
literature and to compare them with the cavitation bubble model results presented above. 
As far as the author is aware, similar evaluation of experimental data on the cavitation 
bubbles has not been published previously in the literature. 

An important prerequisite for the cavitation inception is the existence of cavitation 
nuclei in the liquid. As the nuclei are distributed in the liquid at random and as their 
size is also random, the resulting cavitation always has a random character. This makes 
direct observation of cavitation bubbles extremely difficult. As a consequence, very few 
experimental investigations of real cavitation bubbles have been reported so far, and in 
these investigations only a limited number of bubbles and bubble parameters have been 
studied. Naturally, evaluation of limited data can yield only limited results. 

The dynamic ambient pressure reduction necessary for cavitation bubble generation 
can experimentally be achieved in two ways. First, cavitation can occur in a flowing 
stream or on moving bodies. The method producing cavitation bubbles in a flowing stream 
was used, e.g., by Knapp and Hollander [2], Blake et al. [6], and Bark and van Berlekom 
[8]. Second, the necessary pressure reduction can be achieved by a tension pulse which 
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propagates through the liquid. This technique was used, e.g., by Chesterman [3], Schmid 
[4], Gallant [5], and Fujikawa and Akamatsu [7]. A review of the generation of tension 
in !iquids was also recently given by Trevena 1131. In real environments the changes of 
the ambient pressure never have the simple square form shown in Figures I and 2. Rather, 
the pressure p,(t) continuously varies during the bubble life and the particular shape of 
the ambient pressure field is determined by the particular experimental arrangement. 

As discussed in detail in reference [14], as many quantities as possible should be 
measured if one wants to arrive at a solid interpretation of the experimental data in 
bubble dynamics. The measured quantities can be, for example, a succession of the 

. . 
maxrmum bubble radrt R,, , . R RM~,..., I,:, the collapse times T,,, T,,, . . , the peak 
pressures in the bubble pulsar p,,, , p,,?, 0, and the effective widths of the bubble pulses 
6,, LY,, . . 

The basic method of investigation used by all the authors mentioned above is high-speed 
photography of the bubble oscillations. Some authors, as for example Gallant [5], 
Fujikawa and Akamatsu [7], and Bark and van Berlekom [8], have also recorded the 
pressure variations in the liquid (usually the changes of the ambient pressure with 
superimposed bubble pulses radiated by the oscillating bubbles). However, these pressure 
records, although extremely useful for determining the details of the pressure field p&t), 
do not allow one to determine such useful quantities as the peak pressure in the bubble 
pulse and the effective width of the bubble pulse. Thus from those quantities mentioned 
above the only ones that can be used for the evaluation here are the first and second 
maximum bubble radii R &,, and R,,,, the first collapse time T,., , and in some cases also 
the third maximum radius R,,l, all these quantities being determined by high-speed 
photography as mentioned. 

Some authors (e.g.. Chesterman [3], Schmid [4], and Bark and van Berlekom [8]) have 
not reported the form of the variable pressure field pX (t) in their experiments. In these 
cases, however. the ambient pressure pL, (more exactly, the “average” pressure during 
the collapse phase) can be determined, by using the values of Rh,, and T, , , from Rayleigh’s 
formula for the collapse time of a vapour bubble: i.e., 

17x, =p.(R,~,,T,,,,lT,,)~+P,. (6) 

Here T., ,,. kO.92 is the collapse time of the vapour bubble in the Z-system of the 
non-dimensional variables, and this collapse time can be shown to vary only very little 
with p, L. [ 151. ! Note that the non-dimensional collapse time shown in Figure 8 in reference 
[ 151 is defined as T,, , = Tc,/[RA,,(px/pa, )“‘I. A mutual realtion between the two non- 
dimensional collapse times is then T,, ,,, = T,, ,( 1 - P,./px (‘I”‘. After substituting the values 
of T,, , corresponding to different ambient pressures pl,. into this formula, validity of the 
claim that T,, ,r, is independent of pa ( can easily be verified.) 

The formula (6) was tested first by means of data from experiments where the pressure 
pKc was known (see, e.g., Figures 7 and 9 in reference [2], and Figures 3, 4 and 1.5 in 
reference [5]). Having been found satisfactory, it was used afterwards for calculating the 
pressure pxc. in those cases where the ambient pressure was not given explicitly in the 
reports. However, let us note here that in some cases the application of formula (6) to 
experimental data led evidently to incorrect results (as, e.g., in the case of Figure 8 in 
reference [2]). 

From the measured maximum radii it was possible to determine the first damping 
factor, cy, , and in some cases also the second damping factor, (Ye. These damping factors 
together with the corresponding bubble-sizes, R&,, , and the ambient pressures, pmc, (as 
determined from the formula (6)) are summarized in Table 3. Variations of the first 
damping factor with the bubble size and the ambient pressure, respectively, are shown 
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TABLE 3 
Experimental data on cavitation bubbles; notes: t, the value of pmc was estimated from the 
published form of the ambient pressure field poo( t); $, the value of pWC was computed from 
data given in the caption to Figure 13 of reference [6] by using an estimated value of the 

pressure coeficient : C, = -0.15 

Source of data 

Authors 

Knapp and 

Hollander [2] 

Chesterman [3] 

Schmid [4] 

Gallant [ 51 

Blake et al. [6] 

Fujikawa and 
Akamatsu [ 71 

Bark and van 
Berlekom [8] 

Average values 

Further R MI PC0 a2 Symbols in 
Figure descriptors (mm) &Pa) (Y ( -) Figures 3-5 

7 3.8 21.2 0.70 0.75 9 3.6 20.9 0.86 0.77 & 

2(a) 6.8 2.5 0.74 0.67 0 
2(b) 4.0 4.2 0.85 0.55 a 
2(c) 6.9 3.6 0.77 0.67 0 
3(c) Strip no. 39 6.6 2.4 0.47 A 
3(c) Strip no. 40 6.9 2.3 0.69 V 
3(c) Strip no. 41 6.1 2.4 0.43 0 
3(c) Strip no. 42 6.1 2.2 0.51 + 

2 5.8 14.8 0.50 n 

11 Curve no. 2 2.0 -2.5t 0.56 0.55 11 Curve no. 3 2.5 -2.5t 0.70 o-71 : 

13 6.4 -8.5.t. 0.66 +I+ 

8 1.0 71.2 0.38 V 

24 3.6 5.5 0.49 1xI 

4.8 11.1 0.62 0.67 

Bubble size, I?,, (mm) 

Figure 3. Variation of the first damping factor, (I,, with the bubble size, R,, - -, Average value for 
cavitation bubbles, - - - average value for spark- and laser-generated bubbles. See Table 3 for key. 
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Figure 4. Variation of the first damping factor, a,, with the ambient pressure, px, -. Theoretical curve. 
See Table 3 for key. 

in Figures 3 and 4. Variation of the second damping factor with the bubble size is given 
in Figure 5. Also displayed in Figure 4 is a theoretical variation of (Y, with pxC as computed 
for the medium-sized vapour bubbles in reference [ 15, Figure 111. Unfortunately, no such 
theoretical variation of (or with R,,,, is known for vapour bubbles at present, although 
for bubble sizes considered, i.e., for R M, ranging from 1 to 10 mm, the bubble behaviour 
is strongly influenced by heat losses [ 161 and thus, in theory at least, LY, should vary with 

Rhr,. 
It was shown elsewhere [ 141 that knowledge of one non-dimensional quantity only is 

insufficient for determining the amplitudes of bubble oscillations A,, AZ, . . . , and for 

I 
5 

Bubble we, R,, (mm) 

Figure 5. Variation of the second damping factor. a2, with the bubble size, R,, -. -, Average value. See 
Table 3 for key. 
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validation of the theoretical model. Unfortunately, in the case of the cavitation bubbles 
only the damping factors (or and a2 are known. Thus it cannot be verified completely 
convincingly whether or not the cavitation bubbles really behave for t > Tg like the spark- 
and laser-generated bubbles (this assumption has been used, for example, in section 2 
when formulating the cavitation bubble model). Nevertheless, the comparison of available 
data shows that at least as far as the damping factor (Y, is concerned these bubbles behave 
similarly. 

With respect to the limited data base it is highly useful to have a brief look at the 
results obtained in references [14, 16,171, where data from experiments with bubbles 
generated by underwater explosions, sparks and lasers were analyzed. In these references, 
when applying the theoretical model to experimental data, one could choose agreement 
either in the value of the first minimum radius R,, (represented by the measured peak 
pressure p,,) or in the value of the second maximum radius RM2 (represented by the 
measured damping factor a,). However, it was not possible to obtain agreement in both 
ppl and (Y, at the same time. For reasons discussed in great detail in the references 
mentioned, it was decided to accept the agreement in pp, and to reject that in (Y,, thus 
accepting the idea of an additional damping. 

To return to the present problem, when comparing the damping factor (Y, in experiments 
with spark- and laser-generated bubbles with data given in Figures 3-5 one can notice, 
first, that the damping factors are approximately the same (the difference in the average 
value is discussed later). The damping factors are also often much smaller than those on 
the theoretical curve given in Figure 4. This indicates that, similarly as in the case of 
bubbles generated by underwater explosions, sparks and lasers, there is an additional 
dissipative mechanism not accounted for in the theoretical model. In the case of cavitation 
bubbles considered here this mechanism may be, in part, heat conduction. However, heat 
conduction alone cannot explain all the energy losses [ 161. Therefore further mechanisms 
must be considered. Possible mechanisms, as suggested by various researches, were 
reviewed in reference [ 171. They may be briefly summarized as follows: (i) turbulence in 
the water surrounding the bubble induced by the bubble wall distortion; (ii) loss of gas 
from the main bubble in the form of microbubbles; (iii) excessive gas cooling in the 
protuberances; (iv) internal converging shocks. 

The data given in Figures 3 and 5 also seem to support an earlier finding [16] that the 
damping factors (Y, and (Ye are independent of the bubble size, R,,.,, , even in the region 
where heat losses are significant: i.e., for RM, ranging from 1 to 10 mm (certainly, more 
data are needed to answer this question with greater confidence). As far as the variation 
of (Y, with pm<. is concerned, the data given in Figure 4 are insufficient to allow one to 
draw any more serious conclusions (there is only one measured point for the pressure 
region pmC > 22 kPa, where the theoretical curve starts decreasing significantly). 

Finally, the data points show a very large scatter. Similar scatter was also found in the 
case of the damping factors of spark- and laser-generated bubbles. It indicates the presence 
of a dissipative mechanism acting in a random manner and thus it supports the suspicion 
that the primary cause of the extra energy losses is the bubble wall distortion, which is 
always irregular (and random). 

As mentioned above, in some cases it was also possible to determine the value of the 
second damping factor, (Ye. In theory, a2 should equal cy, (cf. Table 2). However, as can 
be seen from Table 3, in real situations three cases can occur. These are as follows. 

(i) (Y, < CY~. Such a damping, which represents a decrease of energy dissipated in the 
second period of bubble oscillation as compared with the first period is typical for gas 
bubbles. In the case of the vapour bubbles this damping may indicate rectified diffusion 
of dissolved gases from the liquid into the bubble interior. 
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(ii) (Y, = LY?. This represents an equal damping for the first and second bubble oscilla- 
tions. Such a damping is predicted by the simple vapour bubble model given in section 2. 

(iii 1 a, > (Y?. This represents an increase in the damping for the second bubble oscilla- 
tion. The increased damping can be attributed to the stronger influence of the yet unknown 
dissipative mechanism (most probably turbulence J and to the size-dependent effects, such 
as viscosity and heat conduction, also not accounted for in the model. 

If one computes the average values of the damping factors in Table 3, then these are 
(LX,) = 0.62 and (cx~) = O-67. If the influence of p,., and R &, , on the damping is disregarded 
for a moment, then the difference in these averages indicates that there is a net increase 
of the non-condensable gas in the bubble interior (due to the rectified diffusion) during 
the bubble oscillations. 

The average damping factor as found for spark- and laser-generated bubbles in reference 
[ 161 is ((Y,) = 0.5. The reason why the average damping factor of cavitation bubbles rates 
higher is, most probably, the lower average value of the ambient pressure. Whereas in 
experiments with spark- and laser-generated bubbles the ambient pressure was pxc = 
100 kPa, the average value of the ambient pressures given in Table 3 is (px.,.) = 11.4 kPa. 
Let us note that the theoretical difference in (Y, for the two pressures is (Aa,),he,,r. = 
0.88 -0.71 = 0.17 (see Figure 4). This compares quite favourably with the experimental 
difference (da, jey,,, = 0.62 - 0.5 = 0.12. 

5. DISCUSSION AND CONCLUSION 

For a known form of the ambient pressure field p,(t), the cavitation bubble model 
introduced in section 2 makes it possible to compute the bubble wall time history, R(t), 
and the radiated pressure wave, pa(t), both with relative ease and sufficient accuracy. 
This should be convenient for experimentalists, first of all, who often have no time to 
use advanced (and complicated) models described in the literature from time to time and 
resort to a much less accurate approach based on modeling the vapour bubble by gas 
bubble. In this respect the model presented here is a step forward because by retaining 
the simplicity of the gas bubble approximation it makes it possible to incorporate some 
features not accessible for gas bubble approximation. 

Evaluation of the available experimental data on cavitation bubbles and their com- 
parison with analogous data on spark- and laser-generated bubbles indicate that the 
model yields satisfactory predictions up to the time of the first bubble collapse: i.e., in 
the time interval (0, T, + T,,). At later stages in real bubbles large energy losses occur, 
not covered up by the model. For the range of bubble sizes examined in this study these 
losses are partially due to heat conduction. However, the mentioned comparison with 
other experiments reveals that there are further dissipative mechanisms, and these seem 
to be even more important than heat conduction. Unfortunately, the nature of these 
mechanisms has not been clarified yet. Among possible candidates are turbulence, excess- 
ive heat and gas losses from the bubble (all these three mechanisms could be provoked 
by the bubble wall distortion), and converging shocks in the bubble interior. Examination 
of the damping factor data also indicates that the unknown dissipative mechanism acts 
partially in a random manner. This only further supports the idea that the primary cause 
of the extra losses is the irregular bubble wall distortion observed during the real bubble 
oscillations. 

The model accuracy would be increased if rectified gas diffusion from the liquid into 
the bubble interior were included. Finally, the use of the transition condition d = d, for 
the rebound phases is not quite correct, but it is hoped that the error thus introduced is 
small. 
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It is evident that only further experiments can throw more light on the complicated 
behaviour of real cavitation bubbles. In this connection it should be emphasized that 
significant progress can be achieved only if the high-speed photography methods are 
supplemented by detailed bubble pulse measurements as discussed elsewhere [14]. 

When formulating the cavitation bubble model in section 2, the assumption was made 
that the wall velocity during the driving phase is sufficiently low (e.g., d < 6 m s-l). 
Examination of the available experimental records shows that this is also the case with 
real cavitation bubbles (see, e.g., Figures 8 and 9 in reference [2], and Figure 8 in reference 
[7]). With respect to these low-growth velocities it is felt that the designation of the 
cavitation bubble growth as “explosive” (see, e.g., reference [l], page 1) is inadequate. 
On the contrary, the growth velocities of the cavitation bubbles are approximately two 
orders lower than the growth velocities of the explosion, spark- and laser-generated 
bubbles or the collapse velocities of any vapour bubble [ 14, 16,171. 

In the literature the possibility of complete bubble break-up into many very minute 
bubbles has sometimes been mentioned (see, e.g., references [18,19]). Such a break-up 
may be a source of an intense turbulence and increased cooling of the minute bubbles, 
but it cannot prevent the bubble from rebounding. The compressed vapour will force the 
minute bubbles to grow and later to coalesce into a larger bubble. Due to increased energy 
dissipation the regrown bubble may be of smaller size than it would be if the break-up 
did not occur. The collapse without visible rebound, as reported by Harrison [20], who 
observed only grey fog after the bubble collapse, seems highly improbable, if not impos- 
sible on physical grounds. (Occurrence of just the grey fog formed by many quiescent 
minute bubbles would require that all the liquid kinetic energy associated with the radial 
flow be dissipated during the collapse phase and none be transferred into the internal 
energy of the vapour. However, if that were possible at all, then there would be no reasons 
for the bubble to disintegrate because after reaching the minimum volume the bubble 
would cease to perform any movement.) 

In the literature the pressure pulses radiated by the cavitation bubbles are usually called 
the “shock waves”. However, such a term is questionable since the existence of the shock 
fronts in the leading edge of the pressure pulses and the associated supersonic velocities 
of the pulses have never been experimentally proved. On the contrary, the few investiga- 
tions that have been carried out revealed almost sonic velocities of the pressure pulses 
[21], their smooth profiles (see, e.g., Figure 3 in reference [22] and Figure 10 in reference 
[23]), and their acoustic propagation (l/r law)-see, e.g., Figure 5 in reference [24] and 
Figure 5 in reference [25]. Thus, until further experimental evidence proves the contrary, 
it seems more appropriate to use the more moderate term “bubble pulse” even in the 
case of cavitation bubbles (the term “bubble pulse” was originally coined in underwater 
explosions research-see reference [26]). 
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