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ABSTRACT 
 
A wall motion of a bubble freely oscillating in a liquid is studied from the point of view of energy conversions at different instants. It 
is shown that the time of the bubble oscillation can be divided into two distinct intervals. In the first long interval (here called PK and 
KP intervals) the prevailing energy conversion is between the potential energy of the bubble and the kinetic energy of the liquid. In 
the second short interval (here called KI and IK intervals) the kinetic energy of the liquid is transformed into the internal energy of 
the gas/vapor in the bubble interior and into some other forms of energies. It is shown that by observing the bubble wall motion in the 
PK and KP intervals, only the value of the maximum bubble radius in the corresponding oscillation can be determined. However, 
only the knowledge of the maximum bubble radii is insufficient for formulation of a correct theoretical model. Unfortunately this fact 
is often not respected in the literature. 
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INTRODUCTION 
 
Bubble oscillations remain an important topic in fluid dynamics. While they are traditionally associated with 
erosion damage [1 - 5], recent efforts are aiming at medical applications, such as contrast-enhancing in 
ultrasonic imaging [6 - 9] and shock wave lithotripsy [10, 11]. Further recent studies are aiming at seismic 
airgun development [12 - 14], acoustic emission monitoring [15], bubble augmented waterjet propulsion 
[16], study of liquid compressibility [17], microbubble dynamics monitoring [18], standing cavitation 
bubbles generation [19], and optimization of an augmented Prosperetti-Lezzi model [20]. In experimental 
studies of free bubble oscillations both spark generated bubbles [1, 21 – 25] and laser generated bubbles [2, 
3, 26 – 33] represent very useful tools. 
 
In spite of many works dealing with physics of bubble oscillations (for a recent extensive review of this topic 
see, e.g. [34]), there still remain many unanswered questions. One important point concerns energy 
transforms in oscillating bubbles. Analyses of energy transforms either theoretical, or even based on 
experimental data, are rare in literature and an analysis of energy transforms encompassing different time 
intervals is missing completely. This has serious consequences. For example, when reviewing the literature it 
can be seen that many authors fit their experimental radius vs. time data with theoretical variations computed 
using models based on an assumption of an ideal gas bubble oscillating adiabatically. After selecting a 
suitable intensity of the bubble oscillation the correspondence over a relatively large part of the time of the 
bubble oscillation can be obtained. The theoretical model is thus considered to be validated and is further 



 

used to compute, e.g., pressure and temperature in the bubble at its maximum contraction. As will be shown, 
such an approach, which at first sight might seem to be correct, leads to incorrect results. 
 
In Section 1 a radius time history of an experimental bubble is first compared with theoretical computations. 
It is shown that during a predominant part of the time of the bubble contraction all commonly used 
theoretical models fit the experimental data with almost the same accuracy. To explain this surprising 
correspondence between the models and the experiment, energy conversions in a freely oscillating bubble are 
analyzed in Section 2. In Section 3 the results of the analysis are discussed and an attention is drawn to the 
pitfalls that can be encountered when interpreting the experimental data. 
 
 
 
EXPERIMENT VS. THEORY 
 
As an introduction to the following discussion, selected experimental results are compared with theoretical 
ones in this Section. The experimental data have been obtained when studying the spark generated bubbles. 
These bubbles have been produced by discharging a capacitor bank via a sparker submerged in a laboratory 
water tank having dimensions of 6 m (length) x 4 m (width) x 5.5 m (depth). The sparker electrodes have 
been made of tungsten wires of diameter 1 mm and the gap between the two electrodes has been set at 
approximately 1 mm. The sparker has been positioned at a depth of 2.5 m with a distance to the nearest water 
tank wall of 1.2 m. The capacitance of the capacitor bank could be varied in steps by connecting 1 to 10 
capacitors in parallel. Each of these capacitors had a capacitance of 40 μF. The capacitors have been charged 
from a high voltage source whose voltage could be varied from 2.0 to 2.5 kV. An air-gap switch has been 
used to trigger the discharge through the sparker. 
 
Both the spark discharge and subsequent bubble oscillations are accompanied by intensive optic and acoustic 
radiations. These radiations have been monitored by a broadband hydrophone and an optic detector. A 
limited number of high-speed camera records have been also taken with framing rates ranging from 2800 to 
3000 fps (frames/second). A more detailed description of the experimental setup can be found in [35 - 37]. 
 
The size of the bubbles studied in these experiments is described by the first maximum radius RM1, and the 
bubble oscillation intensity is described by the non-dimensional peak pressure in the first acoustic pulse 
pzp1=(pp1.r)/(p∞.RM1) [36]. Here pp1 is the peak pressure in the first acoustic pulse p1(t), that has been radiated 
by the bubble during its first contraction, p∞ is the ambient (hydrostatic) pressure at the place of the sparker, 
and r is the hydrophone distance from the sparker center. 
 
In the following the results from one particular experiment will be described. In this experiment the bubble 
size was RM1=51.5 mm, the hydrophone distance from the sparker center was r=0.5 m, and the intensity of 
this bubble oscillation, as determined from the pressure record, was pzp1=70.3. Selected frames from a film 
record obtained by a high-speed camera and showing the bubble at different instants during the first 
contraction phase are shown in Fig. 1. Throughout this paper this bubble will be used as a reference. 
 



 

 
 
Fig. 1 Selected frames from a high-speed camera record. The bubble size is RM1=51.5 mm, the intensity of bubble oscillation is 
pzp1=70.3, the framing rate is 2800 fps. The time at each frame refers to the time scale origin, which has been selected to coincide 
with a time, when the bubble attains the maximum radius RM1 (see also Fig. 2). At the sides of the bubble two conical brass holders of 
the tungsten electrodes can be seen. The tungsten electrodes themselves can be seen penetrating into the bubble. Small bright objects 
with tube like traces moving outside the bubble are plasma packets. The two bright objects at the sides of the frames are illuminating 
lamps. 
 
 
The bubble radii corresponding to different instants can be determined from the frames. Values of the bubble 
radii obtained in this way are displayed in Fig. 2. As the experimental bubble is not ideally spherical (it is 
slightly elongated in a vertical direction), the data points represent an average from two perpendicular 
directions (horizontal and vertical). The time interval between two points is given by the framing rate of the 
camera. 
 
In Fig. 2 the experimental points are plotted together with theoretical variations of the bubble radius R with 
time t. The theoretical variations have been computed using four different bubble models. One of these 
theoretical curves has been obtained under assumption of a non-compressible liquid (that is, using the 
Rayleigh’s model [39]). The remaining three curves have been computed under assumption of liquid 
compressibility using the Gilmore’s, Herring’s, and Herring’s modified model [39]. In all theoretical models 
a spherical gas bubble oscillating adiabatically has been assumed. The constants used in these computations 
had the values corresponding to the experimental conditions: the ambient pressure p∞=125 kPa, liquid 
density ρ=103 kg.m-3, velocity of sound in the liquid c∞=1480 m.s-1, the ratio of the specific heats of the gas 
in the bubble γ=1.25, constants in the Tait equation of state for the liquid B=300 MPa and n=7, the bubble 
size RM1=51.5 mm, and the non-linear amplitude of the first bubble oscillation A1=2.72 (the non-linear 
amplitude is defined as A1=RM1/Re, where Re is an “equilibrium” radius). The value of A1 has been 
determined from the experimental value of pzp1=70.3 using the theoretical scaling function A1=f(pzp1,γ) and 
the procedure described in Ref. [36]. 
 



 

 
 
Fig. 2 Comparison of the experimental data with theoretical variations of the bubble radius R with time t during the first contraction 
phase (experimental data for the following expansion phase originating from the same experiment are shown in Fig. 4). The time 
scale origin has been selected as an instant when the theoretical computations start, i.e., when the bubble radius is R=RM1, and the 
bubble wall velocity dR/dt=0. The experimental points have then been shifted along the time scale until the best agreement with the 
theoretical curves has been obtained. The position of the first data point then determines a time reference for the remaining 
experimental points. The final stages of the bubble contraction are shown enlarged in the inset. Letters HM, R, H, and G stand for 
Herring’s modified, Rayleigh’s, Herring’s, and Gilmore’s models respectively 

 
 
As can be seen in Fig. 2 at first sight, all theoretical models yield a reasonable fit to the experimental points. 
Even more, the curves corresponding to different theoretical models are almost indistinguishable mutually in 
the scales used in Fig. 2. The overall shapes of the theoretical curves R(t) resemble an “inverted tea cup” (in 
Fig. 2 only a half of this “cup” is displayed), and from what has been said it follows that this shape is 
independent of the form of the equations used to approximate the liquid compressibility. Or, in other words, 
it is independent of the theoretical model used in computations. The theoretical curves start to differ from 
each other only at the final stages of the bubble contraction (shown enlarged in the inset), where, 
unfortunately, no experimental points are available for comparison. To explain this relative independence of 
the R(t) curve shape on the liquid compressibility, the transforms of energies in a freely oscillating bubble 
must be analyzed. This will be done in the following Section. 
 
 
 
INTERVALS OF ENERGY TRANSFORM 
 
In the experiments described in Section 1 the spark generated bubbles have been studied. As it has been 
shown earlier by analyzing the radiated pressure waves [38], the spark generated bubbles are basically vapor 
bubbles (that is, except that the bubble contains a limited amount of gases, the vapor evaporation and 
condensation at the bubble wall play an important role for them), they do not behave adiabatically [37], and 
their oscillations are accompanied by certain energy transforms, character of which is still not very well 
understood [35 - 37]. At present time there is no theoretical model available in the literature taking into 
account all these features. Therefore Herring’s modified model will be used here. This model has an 
advantage in a relatively high acoustic radiation and is relatively simple so that the analysis is more 
transparent. It will be shown later that this model meets the expectations of its role in this paper well. 
 



 

The model assumes a spherical gas bubble freely oscillating in a compressible and extended liquid. The 
thermal behavior of the bubble is assumed to be adiabatic. The excitation of the bubble for free oscillation is 
assumed to be done by initially decreasing its energy. The analysis will be limited to the first contraction and 
expansion phases. It will be shown that even if this simple model is used to represent a real spark generated 
bubble, a useful insight into the transforms of energies can be obtained. 
 
Consider a spherical gas bubble of radius RM1 and let the bubble be initially at rest. At the moment t=0, the 
pressure of the gas in the bubble interior is instantaneously decreased to a value Pm1<p∞. Due to the excess 
pressure, p∞ - Pm1, the bubble will start contracting to a first minimum radius Rm1 (the first contraction phase 
lasting Tc1), and then will expand to a second maximum radius RM2 (the first expansion phase lasting Te1). 
 
The initial potential energy of the bubble is 
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During the contraction from RM1 to R the decrease of the potential energy equals 
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The liquid, which was initially at rest, is streaming towards the bubble during the contraction phase and 
acquires a kinetic energy 
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where the dot denotes a time derivative. 
 
As said above, during the bubble contraction and expansion the gas pressure, P, is supposed to change 
according to the adiabatic law 
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The initial internal energy of the gas (referred to an infinite expansion of the bubble, at which the internal 
energy is defined to be zero) is 
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The work done on the gas during the compression from RM1 to R will manifest itself as the increase of the 
internal energy 
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The oscillation of this bubble is governed by the energy relation 
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where ΔEa is a cumulative acoustic energy radiated from the bubble. The acoustic energy ΔEa can be 
determined from Eq. (7) after computing ΔEp, Ek, and ΔEi from Eqs. (2), (3), and (6). 
 

To determine the energies ΔEp, Ek, ΔEi, and ΔEa, the time variations of R and R  are needed. In this Section 
these variations will be determined using the Herring’s modified equation [36] 
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The pressure P at the bubble wall is given by Eq. (4) and the initial conditions of Eq. (8) are R(0)=RM1 and 

R (0)=0. 
 
In Eq. (8) the bubble oscillation intensity is determined by the ratio of the initial pressure Pm1 and the 

ambient pressure p∞, that is by *
1mP =Pm1/p∞. However, as shown in [38], in theoretical computations a more 

convenient intensity measure is the non-linear amplitude of the first oscillation A1. The “equilibrium” radius 

Re used in computing A1 is defined by a condition that P=p∞ when R=Re. Then    3/1*
11


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measure of the bubble oscillation intensity, convenient above all in experimental works, is the non-
dimensional peak pressure in the first acoustic pulse, pzp1, introduced already in Section 1. 
 
As said above, in this work the Herring’s modified equation (8) has been selected for two reasons. First, it is 
a relatively simple equation. However, the second reason is even more important. As has been shown in 
many experiments with spark and laser generated bubbles, cavitation bubbles and bubbles generated by 
underwater chemical explosions, oscillations of real bubbles are strongly damped. At present, unfortunately, 
some energy transforms, which are responsible for this damping, are not sufficiently known [3, 26, 35 - 38]. 
Thus a significant part of the damping, because its nature is not known, is not taken into account in any 
theoretical computations published in literature. The unknown energy transforms certainly limit the validity 
of any present theoretical model and thus the results obtained with any model have to be interpreted with 
extreme caution. Herring’s modified equation, when compared with Gilmore’s equation, gives a stronger 
acoustic radiation, and such a stronger acoustic radiation may be used to cover a part of the unknown energy 
losses. Thus for the same intensity of oscillations Herring’s modified equation gives less extreme results, 
which seems to be closer to reality than the results obtained for the same initial intensity with Gilmore’s 
equation. 
 
An example of computed variations of energies ΔEp, Ek, ΔEi, and ΔEa with time t is given in Fig 3. The 
variations shown in Fig. 3 are a graphical representation of Eq. (7) and thus ΔEp represents a decrease of Ep 
and ΔEi an increase of Ei. For convenience the energies are displayed in a normalized form defined as 
Ez=E/EpM1. When solving Eqs. (2), (3), (6), and (8) the values of physical constants and of other parameters 
given in Section 1 have been used. 
 



 

 
 
Fig. 3 Variations of the normalized energies ΔEzp, Ezk, ΔEzi, and ΔEza with time t in the first contraction (compression) and expansion 
phases. The contraction phase is lasting Tc1, the expansion phase is lasting Te1. Time scale origin was set to coincide with the 
beginning of the contraction phase. Z=R/RM1 is a normalized bubble radius and tk is an instant, when the kinetic energy Ek attains a 
maximum value 

 
 
As can be seen in Fig. 3 the transform of the bubble potential energy into the kinetic energy of the liquid is 
dominating during almost 97% of the contraction phase. The transform of the potential energy into the 
internal energy of the gas or into the radiated acoustic energy is not significant in this interval. And as 
follows from Eqs. (2) - (3), both the potential and kinetic energies are independent of the liquid 
compressibility. Thus in this interval the bubble wall motion is almost independent of the liquid 
compressibility and of any thermodynamic processes in the bubble or at the bubble wall. It follows then that 
the motion of the wall of any real bubble is well modeled by the present theory in this interval. 
 
It does not mean that the thermodynamic processes in this interval play no role in the bubble wall motion. 
However, these processes will manifest themselves significantly only during the last 3% of the contraction 
phase. In other words, the processes that take place in the bubble and at the bubble wall in this interval are 
accumulating their effects to show them in full strength just in the last few moments of the bubble 
contraction, lasting only about 3% of the contraction phase. Only in these last instants an important 
information can be obtained (e.g., by observing the bubble wall motion) regarding the processes occurring in 
the whole contraction phase. And only such information can then serve as a solid base when defining a 
correct mathematical model of the real bubble. 
 
In the last moments of the contraction phase, when the kinetic energy and partially also the remaining part of 
the potential energy are being intensively transformed into the internal energy of the gas, a part of these 
energies is being dissipated as the acoustic energy in the theoretical model. However, analysis of the 
experimental data shows [3, 26, 35 - 38] that in the real bubble a part of the potential and kinetic energy is 
dissipated not only as the acoustic energy, but also by some further, yet unknown processes. Therefore any 
further computation at the final stages of the bubble contraction and in the following expansion phase must 
be done (and interpreted) with utmost care, because the present theoretical model begins to depart from 
reality significantly. 



 

 
Hence, if the computation continues further beyond the first contraction phase that is in the first expansion 
phase, a picture similar to that obtained above can be seen again. Now the flow of the energies is inverted. 
The energy accumulated in the gas as the internal energy is transformed extremely fast mainly into the 
kinetic energy of the liquid (now the liquid is streaming outwards the bubble), partially also into the potential 
energy of the bubble. In the theoretical model it is also partially dissipated as the acoustic energy, whereas in 
a real bubble it is dissipated as the acoustic energy and also (as already mentioned above) by some yet 
unknown processes. These initial transforms will last about 3% of the first expansion phase again. However, 
because a large part of the energies has been dissipated in the vicinity of the minimum radius Rm1, the 
magnitude of the kinetic and potential energies will be smaller now (see Fig. 3). At the end of this short 
interval the kinetic energy attains a maximum value and in the following long interval, lasting about 97% of 
the expansion phase, this kinetic energy and the remaining part of the internal energy are being transformed 
back into the potential energy of the bubble. And again, the energy transforms in this long interval are 
independent of the liquid compressibility and of the thermodynamic processes in the bubble and at the 
bubble wall. Resulting form of the radius vs. time curve will be the same as in the case of the first oscillation. 
However, now the size of the R(t) curve (characterized by the value of RM2) will be smaller, because a large 
part of the energies has been dissipated during the bubble wall motion in the vicinity of the minimum radius 
Rm1 (see Fig. 4). 
 
From what has been said (and what can be seen in Fig. 3) it follows that both the contraction and expansion 
phases can be divided into two distinct intervals. The first interval, which includes about 97% of each phase, 
in which the governing energy transform is between the potential and kinetic energy, and the second interval, 
which includes about 3% of each phase, in which the governing energy transform is between the kinetic and 
internal energy. And in this small second interval a large part of the internal energy is dissipated as the 
acoustic energy (in the theoretical model) or as the acoustic energy and some other experimentally yet not 
sufficiently studied energies. 
 
With respect to the governing energy transforms the first large interval can be called the PK interval 
(“potential-kinetic” interval), and the second small interval can be called the KI interval (“kinetic-internal” 
interval). In these abbreviations the acoustic energy has been omitted for the sake of simplicity. 
 
It follows from the previous discussion that the shape of the R(t) curve is determined in the PK interval. The 
previous discussion also explains why this shape is independent of the liquid compressibility and of the 
thermodynamic processes in the bubble and at the bubble wall. On the other hand all important 
thermodynamic and dissipative processes will manifests their effects in the KI interval. 
 
An instant the kinetic energy attains the maximum value will be denoted as tk and it can be used as a suitable 
boundary point between the PK and KI intervals (see also Fig 3). The extent of the KI interval is then 
Δt=Tc1-tk and it may be convenient to express this extent as a percentage of the contraction phase duration, 
that is as δk=100Δt/Tc1. It is evident that the value of δk also depends on the bubble oscillation intensity. Thus 
for A1=2.6 (medium intensity oscillations) is obtained δk=5.9%, for A1=3 is obtained δk=4.0%, and for A1=3.4 
(high intensity oscillations) is obtained δk=2.9%. These values of δk have been computed with the bubble 
model described above. 
 
It is possible to define similar intervals as above for the first expansion phase as well. One will obtain the IK 
(“internal-kinetic”) and KP (“kinetic-potential”) intervals now. 
 
The discussion of the energy transforms in a freely oscillating bubble just presented also explains why the 
value of Tc1 is only very weakly dependent on the bubble oscillation intensity, liquid compressibility, the 
thermodynamic processes in the bubble interior and at the bubble wall (e.g., whether the bubble interior 
contains gas or vapor), and on the dissipative processes accompanying the bubble oscillations. In other 
words, the discussion reveals why Tc1 determined in the classical Rayleigh’s model of an empty bubble fits 
so well the experimental data, and also why, when measuring in experiments only Tc1, not much can be 
learned about the observed bubble. 



 

DISCUSSION 
 
In Sections 1 and 2 it has been shown that by observing the bubble wall motion in the PK and KP intervals 
nothing significant can be obtained about the bubble (with the exception of the maximum radii RM1 and RM2). 
In case of bubbles oscillating sufficiently intensively, the shape of the curves R(t) in the first and second 
oscillations, apart from the size, is almost the same. This is true for both the gas and vapor bubbles, that is, 
not only for spark and laser generated bubbles, but also for cavitation bubbles (generated both in 
hydrodynamic and acoustic cavitation) and for bubbles generated by underwater chemical explosions. By 
observing this shape no conclusion about liquid evaporation or vapor condensation, gas diffusion, heat 
conduction etc. can be made. If the bubble oscillation intensity is specified properly, all bubble models 
commonly used (Rayleigh’s, Herring’s, Herring’s modified, Gilmore’s, etc.) yield almost the same variation 
of the bubble radius with time in these intervals (see Fig. 2). This very good fitting of all bubble models to 
the experimental data testifies that any unaccounted for process in the PK and KP intervals has a negligible 
effect on the shape of the R(t) curve. If the intention is to learn more about the bubble or to verify the validity 
of a theoretical model, then the bubble wall motion must be observed in the KI and IK intervals first of all 
and the study of the wall motion must always be accompanied by investigation of other processes (such as 
the acoustic and optic radiations from the bubble) as well. 
 
So far, only a limited number of “probes” into the IK and KI intervals have been reported in the literature 
[27, 28]. Since the knowledge of bubble behavior in the IK and KI intervals is severely limited at present, it 
cannot be decided by comparing the experiments with theory which mathematical model (Gilmore’s, 
Herring’s, etc.) gives the best results. Therefore at present time it is rather irrelevant which bubble model is 
used for the analysis. This is also one of the reasons why the Herring’s modified model is used in this work.  
 
As said above, for bubbles oscillating sufficiently intensively the shape of the radius vs. time curves will 
always be the “inverted tea cup”, both in the first and second bubble oscillation. The size of the R(t) curve in 
the first oscillation will be determined by the energy available for the growth phase minus energy dissipated 
at the initial instance of the bubble growth (the growth phase of spark generated bubbles has not been 
discussed in this paper). The size of the R(t) curve in the second oscillation will depend on the energies 
remaining from the first oscillation after the dissipated energies are subtracted. Thus in the graphical 
presentation of the first and second bubble oscillations there are always two “inverted tea cups” next to each 
other. First, a larger “cup” corresponding to the first bubble oscillation, followed by a smaller “cup” 
corresponding to the second bubble oscillation (for the sake of brevity further bubble oscillations are omitted 
from the discussion). How small the second “cup” is, as compared with the first one depends on the energy 
dissipated in the KI and IK intervals first of all. However, it follows from the results presented in Section 2 
that as far as the shape of the R(t) curve and its size are concerned, the nature of the dissipative mechanism 
(whether it is the acoustic radiation, thermal radiation, heat conduction, liquid evaporation, vapor 
condensation, etc.) plays no role. As can be verified in literature, this fact is very often ignored and this leads 
to misinterpretation of the measured data. 
 
Because at present the role of the different dissipative processes has not been clarified yet (and thus these 
processes cannot be included in the respective theoretical models correctly), some researchers try to fit the 
size of the R(t) curve in the second oscillation by using the dissipative mechanisms already known. These 
are, first of all, the acoustic radiation, and in case of smaller bubbles also the viscosity losses (which are 
unimportant for the large bubbles considered here). The amount of the radiated acoustic energy increases 
with the bubble oscillation intensity. Thus by increasing the bubble oscillation intensity A1 sufficiently, the 
required cumulative dissipated energy can be obtained and thus also the required fit to the experimentally 
determined size of the R(t) curve in the second oscillation can be achieved. Such a procedure is shown in Fig 
4. 
 



 

 
 
Fig. 4 Fitting the experimental data with theoretical curves computed for different bubble oscillation intensities A1. The time scale 
origin is set at the beginning of the growth phase. The experimental data originate from the same experiment as those shown in Fig. 
2. However, now all the experimental data available both for the first growth phase, the first contraction phase and the second and 
third oscillations are displayed. The theoretical variations of R with t have been computed with Herring’s modified model starting at 
RM1 and the growth phases have been obtained by inverting the first contraction phases. The physical constants and parameters used 
in computations are given in Section 1 

 
 
In Fig. 4 the amplitude A1=2.72 corresponds to the bubble oscillation intensity determined from the measured 
peak pressure in the first acoustic pulse, that is from pzp1=70.3. Because only acoustic losses are present in 
Herring’s modified model and these are relatively small for this oscillation intensity, the computed second 
maximum radius RM2 is relatively large. The amplitude A1=4.95 represents the bubble oscillation intensity 
needed to fit the experimental data also in the second oscillation. Now the acoustic radiation is sufficient to 
cover all the losses occurring in a real bubble. However, such an approach is not correct because in real 
bubbles other dissipative mechanisms are also present. And it must be stressed here that the bubble 
oscillation intensity used to fit the experimental data is excessively high now and this may lead to incorrect 
physical results. 
 
To illustrate possible pitfalls arising from using the excessive bubble oscillation intensities, let us have a look 
at the density ρ of the gas in a theoretical bubble. Assuming the conservation of the mass in an ideal gas 
bubble (such assumption is implicitly present in Eq. (4)) it follows that (4/3)πRe

3ρe=(4/3) πRm1
3ρm1. Here ρe is 

the gas density at the equilibrium radius Re and ρm1 is the gas density at the first minimum radius Rm1. This 
equation can be rearranged easily to yield ρm1=ρe(A1 Zm1)

-3, where Zm1=Rm1/RM1. For the given amplitude A1, 
the value of Zm1 can be computed using, e.g., the Herring’s modified model. Thus for a bubble oscillating 
with the amplitude A1=2.72 (this is the intensity of oscillation determined from pzp1 earlier) one obtains 
Zm1=0.054. Assuming further that ρe=0.6 kg.m-3 (approximately the density of saturated vapor at the pressure 
p∞=100 kPa and temperature Θ=100 °C), then ρm1=189 kg.m-3. For A1=4.95 (this is the bubble oscillation 
intensity used in Fig 4 to fit the experimental data both in the contraction and expansion phases) one obtains 
Zm1≈0.0125, and hence ρm1≈2.5 x 103 kg.m-3. However, if the computation is done with Gilmore’s model as it 
is common in the literature, then to obtain a fit to the second maximum bubble radius RM2, the bubble 
oscillation intensity must be increased from A1=4.95 to A1=5.78 (Gilmore’s model radiates acoustically less 
intensively than Herring’s modified model and therefore higher A1 is needed now). In this case the 
corresponding value of the non-dimensional minimum radius is Zm1≈0.0033 and the density is ρm1≈86 x 103 
kg.m-3. Let us remind here that the highest densities of solids given in physical tables are approximately ρ≈20 



 

x 103 kg.m3 (e.g., for tungsten ρ=19.3 x 103 kg.m3). To emphasize the fact that the computed values of Zm1 
and ρm1 are physically unrealistic, the signs “almost equal to” have been used here. 
 
It can be seen immediately that the value of ρm1 obtained with the Gilmore’s model is unrealistically high 
from the physical point of view. However, when reviewing the literature on bubble oscillations, numerous 
examples of computations can be found where the authors use similar extremely high values of bubble 
oscillation intensity in order to obtain the required fit to the experimental data (this approach has been used 
by Lauterborn and his students first [34], and it is extensively used in theoretical computations on bubbles 
oscillating in acoustic resonators nowadays). Such a procedure is possible because from the mathematical 
point of view there is no limit on the theoretical bubble oscillation intensity. To solve the problem 
concerning these excessive gas densities, some authors have been considering the so called van der Waals 
hard core. However, this is a cosmetic procedure only, which cannot overcome the physical incorrectness 
caused by not considering all dissipative processes existing in a bubble. In real bubbles these dissipative 
processes “soften” the bubble oscillations significantly so that the usage of van der Waals core in theoretical 
computations is then most probably unnecessary (see the value of ρm1 computed above for the intensity of 
oscillation A1=2.72). 
 
 
 
CONCLUSIONS 
 
At the beginning of Section 2 a number of simplifying assumptions have been made. These assumptions 
concerned, e.g., the liquid compressibility, the thermal behavior of the bubble, and the method of the bubble 
excitation for free oscillation. In the following analysis it has been verified that in the PK and KP intervals 
these assumptions play, if any, then only a minor role. However, in the KI and IK intervals these 
assumptions cannot be used. Nevertheless, the analysis in the KI and IK intervals has been purposefully 
limited to a minimum, with the exception of a few points discussed in Section 3. 
 
It has been shown that by observing the bubble wall motion in the PK and KP intervals only, not much 
information about the processes in a bubble can be obtained. This fact certainly represents a serious limit 
regarding the correct formulation of a bubble model. Thus it is not possible to agree with the authors of the 
recent review paper [34], who claim that “a remarkable agreement can be obtained” between experimental 
points and theoretical computations based on Keller-Miksis model (cf. a remark at Fig. 38 of Ref. [34]). In 
this case the theoretical bubble oscillates with the amplitude A1=Rmax/Rn=10.8 (the nomenclature used in Ref. 
[34] for RM1 and Re has been adopted here). As far as the density ρm1 at such high oscillation intensities is 
concerned, we refer to the numerical examples given in Section 3. Unfortunately, similar procedures, which 
are based on using excessive and unrealistic intensities of bubble oscillation, are very common in literature. 
 
It is our opinion that to obtain a better understanding of the bubble behavior a lot of work still must be done. 
New experiments should concentrate on the bubble wall motion in the KI and IK intervals first of all. For 
example, it is already known that the bubble shape at the final stages of the contraction phase is not spherical 
[27,28]. However, no further details of this shape are known. And the observations of the bubble wall motion 
must always be accompanied by measurements of the acoustic and optic radiation and by studying other 
processes as well. This is a very challenging task. However, no further progress in the correct understanding 
of bubble oscillations can be obtained without completing this target. 
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