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In the paper a classification of freely oscillating bubbles is given, methods for evaluating 
experimental data in research on bubble dynamics are reviewed, and data on bubble 
oscillation amplitudes, as obtained by analyses of all the accessible experiments (amplitude 
is defined as the ratio of the maximum to the equilibrium radius of a bubble), is summarized. 
This shows that the amplitude range of real bubble oscillations is rather limited. This 
finding, among others, validates the use of simple bubble models for most situations of 
interest in bubble dynamics research. A comparison with the findings of other workers 
shows a close correspondence. Finally, suggestions for further research are given. 

1. INTRODUCTION 

Oscillations of bubbles in liquids have been intensively studied for several decades. The 
reason for this is the ability of bubbles to be harmful in some situations (as, e.g., in the 
case of cavitation in hydraulic machinery), and to be useful in other situations (as, e.g., 
in ultrasonic cleaners). 

A freely oscillating spherical bubble is described by its size and the intensity of oscillation 
[ 11. It is the intensity of bubble oscillation first of all (but not exclusively) that determines 
the overall intensity of the processes associated with the bubbles. The intensity of real 
bubbles’ oscillations was recently studied in a series of papers [l-6], where experimental 
data found in the literature were evaluated. In this paper it is intended to give a 
classification of oscillating bubbles, to review methods used to evaluate experimental 
data, and to summarize the data on bubble oscillation intensities as determined in 
references [l-6]. 

2. CLASSIFICATION OF BUBBLES 

Real liquids can always contain oscillating bubbles. These bubbles are produced by a 
variety of mechanisms, such as transient pressure reduction in the liquid (in this case the 
phenomenon of bubbles’ formation and oscillation is known as cavitation), heating of 
the liquid (formation of bubbles is known as boiling), underwater chemical and nuclear 
explosions, electrical discharges in the liquid (spark bubbles), irradiation of the liquid 
by a focused laser light, blowing a gas or vapour through a nozzle into the liquid, shattering 
pressurized or evacuated glass spheres in the liquid, etc. 

The generated bubbles can be of most diverse shapes and can perform a variety of 
motions. They can occur in isolation or in clusters (bubble fields), and can be situated 
either far from the boundaries (extended liquid) or near the boundaries. The bubbles can 
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perform both free and forced oscillations, and these oscillations can be done in different 
modes. 

In this paper only the simplest case i.e., free radial oscillations of spherical bubbles 
situated far from boundaries will be considered. (A clarifying note is necessary here: the 
theoretical results presented here were obtained under the assumption of spherical bubble 
shape. However, it is well known that experimental bubbles always differ more or less 
from the ideal spherical shape. This will be also briefly discussed later.) In this section, 
then, it is intended first of all to classify briefly such bubbles according to their content, 
method of excitation for free oscillations, intensity of oscillations, and size. 

There are two fundamentally different kinds of bubbles: (1) gas bubbles, which contain 
a non-condensable gas, and (2) vapour bubbles, which contain a vapour of the surrounding 
liquid. In a real environment pure gas and pure vapour bubbles occur, most probably, 
only rarely, and it can be expected that a non-condensable gas is always mixed with a 
liquid vapour in some ratio, which can vary during the bubble life (due to gas diffusion 
and vapour evaporation or condensation). Nevertheless it is still convenient to classify 
the bubbles as being predominantly either gas or vapour ones. 

Both the gas and vapour bubbles can be excited for free oscillations in three different 
ways [7]: (i) by increasing bubble energy, (ii) by decreasing bubble energy, and (iii) by 
temporarily changing the ambient pressure. Whereas the first two methods are, in a way, 
mutually “symmetric”, the third method differs completely. 

Depending on the energy supplied during the excitation phase and on the ambient 
pressure, the excited bubbles can oscillate with different intensities. In this paper the 
amplitude A = R,,,,/ R, will be used as an oscillation intensity measure. Here RM is the 
maximum and R, the “equilibrium” bubble radius. (The reasons for selecting the ampli- 
tude as the oscillation intensity measure are given in the next section.) 

According to the intensity of oscillations the gas bubbles can be roughly classified as 
[8] (a) oscillating linearly (approximately for A < l-05), and (b) oscillating non-linearly 
(A > 1.05). The case of non-linear bubble oscillations is the most important. (Determina- 
tion of the oscillation amplitudes in experiments will be the subject of sections 4 and 5.) 

Finally, the real bubbles are of different sizes. The bubble sizes can be described by 
the characteristic bubble radii, viz. the maximum, equilibrium, and minimum radii. In 
this paper the maximum radius, RM, will be used, because it can be determined most 
easily in experiments. As the bubble size influences strongly the bubble behaviour, it is 
convenient to classify the bubbles according to their maximum radius in the following way. 

(I) Large bubbles (macrobubbles). Depending on the amplitude, A, the maximum 
radius of the macrobubbles, RM, is assumed to be larger than 0.01-0.3 m (see Figure 1). 
For such large bubbles the influence of gravity on the bubble motion cannot be neglected. 
Bubbles of this size are produced, e.g., by underwater chemical explosions (in this case 
they can attain maximum radii as large as 10 m [9]), or by underwater nuclear explosions 
(in this case they can attain maximum radii of the order of 10’ m [lo]). Evidently, the 
larger the bubble size, the more pronounced the effect of gravity. 

(II) Small bubbles (microbubbles). Depending on the amplitude of oscillations, A, the 
maximum radii of these bubbles are assumed to be smaller than 10-5-10-4 m (see Figure 
1). For these bubbles the effects of surface tension and viscosity on their motion cannot 
be neglected. Evidently, the smaller the bubble, the more pronounced are the effects of 
surface tension and viscosity. 

(III) Medium-size bubbles. The size of these lies between that of macrobubbles and 
microbubbles (Figure l), and they are of greatest interest in this study. A very important 
subclass of these bubbles are the so-called scaling bubbles (Figure 1). For scaling bubbles 
the effects of gravity, surface tension, viscosity, and heat conduction can be neglected 



AMPLITUDES OF BUBBLE OSCILLATIONS 261 

3- 

Micro- 

Y 
bubbles 

Mech;s~ed 

3 I 
.z 2- 

2 
a 

Bubble size, RM Cm) 

Figure 1. Bubble map (adapted from reference [ll]). The map was computed for gas bubbles in water and 
an ambient pressure equal to the atmospheric one (for other liquids and/or ambient pressures the map will 
differ from that given here). The limits displayed depend also on the polytropic exponent of the gas in the 
bubble interior, on the excitation method, etc. (for details see reference [If]). 

[ 111. It is assumed that the scaling bubbles obey the scaling law [ 111. For the non-scaling 
medium-size bubbles heat losses play an important role. For sufficiently large or sufficiently 
small bubbles heat losses can be neglected. However, there is a certain range of bubble 
sizes where heat losses reach a maximum. 

3. SELECTION OF THE BUBBLE OSCILLATION INTENSITY MEASURE 

Besides the bubble size the intensity of bubble oscillations represents the second basic 
parameter determining the overall bubble behaviour. With respect to a highly diverse 
world of bubbles a number of oscillation intensity measures can be defined, each being 
suitable for a particular situation and each having its pros and cons. Unfortunately, none 
of these measures can directly be determined in experiments (with the exception of a few 
special cases to be mentioned later). For the purpose of comparison of different bubble 
excitation techniques it is important to use one measure consistently. Before discussing 
the amplitude (selected by the author as the intensity measure) let us briefly review some 
other possibilities. 

Probably the most widespread intensity measure is the ratio of the minimum pressure 
at the bubble wall, P,,,, and the ambient pressure, ~~0: i.e., Pz = P,,,/pm. This measure is 
a natural intensity parameter in the compression system of non-dimensional variables 
[7], which is the favourite system in theoretical studies. This system is also advantageous 
in experimental work, because the maximum radius, RM, which is a basic parameter in 
this system, can easily be measured. From the excitation method point of view this system 
corresponds to the excitation by decreasing the bubble energy. This is, however, an 
experimental technique used rather seldom. In the case of vapour bubbles this measure 
can even be a source of confusion, as in this case P,,, = Pvp (Pup being the liquid vapour 
pressure), and such a value of P,,, does not correspond to the actual intensity of oscillations 
when compared with the gas bubbles [ 121. One can illustrate this by a concrete example. 
For a vapour bubble oscillating in water, the liquid vapour pressure is Pup A2 kPa. 
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Assuming that the ordinary ambient pressure pm = 100 kPa, one obtains P& = P,,/pa = 
0.02. However, the vapour bubbles oscillate with such an intensity, which in the case of 
a comparable gas bubble corresponds to a minimum pressure P& = 0.012 [ 121. 

Another possible intensity measure is the ratio of the maximum pressure at the bubble 
wall, PM, and the ambient pressure, pm: i.e., P% = PM/pm. This is a natural intensity 
parameter in the expansion system of non-dimensional variables [7]. Unlike the quantity 
Pz, this measure can be used directly for comparison of gas and vapour bubbles. 

Besides the pressure measures mentioned, there are also intensity measures based on 
ratios of significant bubble wall positions RM, R, and R, (R, is a minimum bubble 
radius). Some authors use the ratio R,/RM or its inverse R,/R,. These ratios can be 
used for comparison of gas and vapour bubbles, but their disadvantage is that they are 
not natural intensity parameters in any system of variables; i.e., they cannot be substituted 
directly in any equation of motion. 

As said above, the author has selected the ratio A = R,/R, and denoted it as the 
(non-linear) amplitude of oscillations. The reasons for this selection are as follows: first, 
this ratio is closely related to the measure P*, and can thus be directly substituted into 
the equation of motion in the compression system of the non-dimensional variables 
(P*, = A-3y, where y is the polytropic exponent of the gas or vapour in the bubble). 
Second, the amplitude thus defined corresponds most closely to the notion of the amplitude 
as used in the field of sound and vibration. Third, in the author’s opinion the amplitude 
A also allows for a quick interpretation and comparison of results in the case of both 
free and forced oscillations, linear and non-linear oscillations, and gas and vapour bubbles. 
The disadvantage of this measure is that in the case of a variable ambient pressure, pm, 
the radius R, has lost its usual meaning, and A has to be determined via some other 
quantity (e.g., via a peak pressure in the bubble pulse, pp [5]). In this case the amplitude 
A represents only an intensity “label”, with no direct physical interpretation. 

4. METHODS FOR EVALUATION OF EXPERIMENTAL DATA 

When studying free oscillations of bubbles experimentally, besides the amplitude A 
and bubble size R, some further quantities have to be determined, such as the ambient 
pressure in the liquid, pm, which often is time dependent, the polytropic exponent of the 
gas or vapour in the bubble, -y, and the properties of the liquid (liquid density pm, speed 
of sound in the liquid c,, liquid vapour pressure Pvp, etc.; for a given liquid these constants 
can usually be found in physical tables). 

The ambientpressure, pm, is either known (e.g., from the configuration of the experiment) 
or can be measured directly. As far as the polytropic exponent, -y, is concerned, it can in 
some cases be assumed to be known as well (e.g., if an air bubble is large enough for 
heat losses to be insignificant and if it oscillates with a moderate intensity so that air can 
be assumed to behave as an ideal gas, then y = l-4). However, very often the value of y 
is not known accurately. This happens, for example, with bubbles for which heat losses 
are significant, or for which the intensity of oscillations is so high that the gas cannot be 
assumed to behave as an ideal one any more, and hence y # constant. In these cases one 
is usually trying to find such an exponent y = constant, which will afford a useful fit of 
a simplified theory to experimental data. Finally, in some cases the gas inside the bubble 
is either unknown or its physical properties are not known well. In all these situations y 
has to be determined experimentally; e.g., indirectly using the method of scaling functions 
to be discussed later. 

The bubble size, RM, can be determined either directly by photographing the bubble, 
or indirectly by measuring the time of the bubble compression or coIlaPse, T,. The time 
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T, can be conveniently determined, e.g., from the pressure wave us. time records [ 11. The 
bubble size can be computed from T, easily if the bubble oscillates either linearly (for 
A+1 onehas R,=(T,/w)(3yp,/p,)“*, and R, = Rg4 [ 131) or with sufficiently intensity 
(for A>3 one has approximately R,,, ‘( T,/O*915)(p,/p,)“*; see, e.g. reference [13]). 
However, to determine R, from T, for other amplitudes one has to use the scaling 
functions. 

Direct determination of the amplitude, A, is possible in those cases where the equilibrium 
radius R, can be measured. This happens when a gas bubble of an initial radius R, is 
excited for oscillations by a short pressure pulse [5]. If the ambient pressure returns to 
the initial value pmi fast enough, then R, = Ri and Ri can be found from bubble photo- 
graphs taken before the pressure pulse has arrived. If RM, too, is known, the definition 
formula for A can be directly applied. 

In theory R, might also be determined by photographing the residual bubble at later 
stages of the bubble life. However, due to rectified diffusion of gases from the liquid into 
the bubble interior, R, need not be constant during the bubble life; hence its value 
determined at later stages cannot be used to compute the amplitude of the first oscillation. 
Of course, further research is needed to determine the exact role of the rectified diffusion 
in free oscillations of bubbles. 

A theoretical amplitude (i.e., the amplitude the bubble would be excited to oscillate 
with if the theory were to agree with the experiment) can also be determined from the 
maximum and minimum pressures at the bubble wall in those cases where these pressures 
can be measured directly. This is the case, for example, with exploding and imploding 
glass spheres, where the initial pressure and radius are known. Thus, in the expansion 
system (pressurized glass spheres [4]) one knows the initial radius RmO and the initial 
pressure P,, . The equilibrium radius can then be computed as R, = R,o(PMo/pr)“‘y 
[7]. The maximum radius, RMI , can be determined by photographing the bubble. In the 
compression system (evacuated glass spheres [4]) one knows the initial radius RM, and 
the initial pressure P,,,, . The theoretical amplitude then is A, = ( Pm,/pI,)-“3y [7]. 

The pressures PM0 and P,,,, can also be determined from a radiated pressure wave, if 
one knows RmO and RM, , respectively. For example, PM0 = pp,,r/ RmO + pm, where ppo is 
a peak pressure in the “shock wave”, and r is a point in the liquid where the wave is 
measured [4]. In the second case P,,,, =pc,r/RM,+px, where pL,, is a valley pressure in 
the wave measured at a point r [4]. 

The theoretical amplitude can also be determined if the gas bubble is excited for free 
oscillations by a steep ambient pressure increase or decrease to a new value PI, = p,n + Ap, 
where the pressure change Ap lasts for a relatively long time [5]. Then, if the ambient 
pressure is increased (Ap > 0), A, = (pm/ P&)-“~’ [7], and if it is decreased (pm - Pup < 
Ap<O), Rc=Ri(pm/~k)~‘~~ 171, h w ere R, is the initial bubble radius before the ambient 
pressure is decreased. Again, in the latter case it is necessary to determine the maximum 
radius, RM, , as well (e.g., by high speed photography). 

However, in the majority of situations the above mentioned methods for direct determi- 
nation of the amplitude cannot be applied, and one has to resort to an indirect method 
based on the scaling functions. 

From what has been said, it follows that when evaluating experimental data one usually 
wishes to determine two or three parameters describing the bubble behaviour (e.g., RM, 
A and y), and some of them cannot be found directly. A way out of this difficulty is 
offered by the method of scaling functions. This method is based on the comparison of 
measured significant bubble wall radii and bubble pulse pressures with suitable scaling 
functions, which are functional dependences of the measured quantities on the amplitude 
A, exponent y and pressure pm. The quantities suitable for comparison are, for example, 
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the minimum radii, R,, compression or collapse times, T,, peak pressures in the bubble 
pulses, pP, effective widths of the bubble pulses, 19, (6 = (l/pi) jp: df, where p. is the 
acoustic pressure in the bubble pulse [l]), radiated acoustic energies, AE,, damping 
factors, Q (a is defined as a ratio of two successive maximum radii; e.g., (Y, = RMMZ/RM, 
[l]), maximum wall velocities, d,,,, etc. 

To reduce the number of variables it is convenient to form non-dimensional pi products 
of the mentioned quantities. Depending on the situation one may select either the Z, W, 
Y or X system of the non-dimensional variables [8]. Then, the non-dimensional minimum 
radius in the Z system, for example, equals Z, = RJR,,,, and the corresponding scaling 
function is Z,,,(A, -y, p,). It is convenient to display the scaling functions graphically, 
with y and pm being parameters in these plots. 

Ideally the scaling functions should be determined experimentally. However, at present 
bubble dynamics research is still too far from this situation, for which reason the scaling 
functions are computed by means of a suitable theoretical model. These computations 
are performed for the excitation method and liquid of interest (usually for the compression 
system and water). So far these functions have been determined only for the scaling 
bubbles (which led, among other things, to their designation “the scaling functions”), 
and this restricts their application to these bubbles first of all. (One should recall that 
with scaling bubbles gravity, surface tension, viscosity, and heat conduction are irrelevant.) 
Several scaling functions taken from reference [l] are displayed in Figures 2-8. Further 
examples can be found in references [4,13, 141. 
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Figure 2. Scaling functions Z,,, (A, y) for pm = 100 kPa. 

A hypothetical example will illustrate the method of the scaling functions best. Let us 
assume that the maximum radius R M of a scaling bubble has been determined from 
bubble photographs. Other quantities also measured are the peak pressure in the bubble 
pulse, pP, at a point in the liquid, r, and a radiated acoustic energy AE,. One wants to 
find, using the scaling functions, the bubble amplitude, A, and the polytropic exponent, 
y. The ambient pressure, pm, and the liquid density, poo, are known. In theory, at least, 
one has thus sufficient information at one’s disposal to solve the problem, because one 
knows the two non-dimensional variables prp = (p,lp&-lR,tt and AE,, = MJ(~P~R~), 
and one knows also the functional dependences of these variables on the unknown 
variables A and y. In other words, one also knows the functions pzp(A, y) and AE,,(A, y), 
these functions having been computed for the ambient pressure pm. Thus, having two 
functions and two unknown variables the problem can easily be solved; e.g., graphically. 
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Figure 8. Scaling functions &,,,(A, y) for pm = 100 kPa. 
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In practice, however, one will encounter serious difficulties when applying this method 
to experimental data, because at present the theoretical models do not take into account 
all the energy losses occurring in real bubbles (even such elaborate models as Gilmore’s 
take into account only acoustic radiation; it should be remembered that losses due to 
viscosity and heat conduction are unimportant for the scaling bubbles). Therefore a 
measurement of as many quantities as possible is necessary to obtain a more complete 
picture of what is really happening with the bubble. 

When analyzing the data from bubbles generated by underwater explosions [ 1,2], it 
was found that the unaccounted energy losses start acting most probably in the vicinity 
of %,I, and thus it seems that they do not seriously influence the minimum radius, R,, , 
the peak pressure, pP, , the effective width of the bubble pulse leading edge, $31 [15], the 
time T,, , and the maximum bubble wall velocity during the compression or collapse 
phases, d,,, , . These quantities should then be preferred for evaluating the experimental 
data. On the other hand, the quantities associated with the rebound or expansion phases 
(e.g., (Y) can be used to assess the unaccounted losses. However, further experiments 
would be needed to verify these assumptions. 

5. AMPLITUDES OF .BUBBLES’ OSCILLATIONS 
EXPERIMENTAL DATA 

AS DERIVED FROM 

By using the methods briefly described in section 4, a number of experimental data 
published in the literature were analyzed in references [l-6] with the aim of determining 
the amplitudes of real bubble oscillations. The bubble sizes us. amplitudes found in this 
way are summarized in Figure 9 (Figures 1 and 9 should be mutually compared with 
certain care as they do not always correspond to the same conditions, such as, e.g., pm, 
3/, method of excitation, etc.). In the following subsections some brief comments and 
supplementary data are given regarding each excitation technique and each data point 
displayed in Figure 9. A full description can be found in the source references [l-6]. 
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Figure 9. Amplitudes of oscillations for experimental bubbles. Source of data: A, Arons et a/ [17,18]; M, 
Mellen [19]; T, Teslenko [20,21]; HL, Hentschel and Lauterborn [22]; V, Vokurka [15]; SITO, Shima et al. 
[23]; HG, Heuckroth and Glass [24]; PK, Popov and Kogarko [25]; OS, Orr and Schoenberg [26]; U, Urick 
[27]; SV, Smulders and van Leeuwen [28]; J, Jensen [29]; SIT, Shima et al. [30]. 
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5.1. UNDERWATER CHEMICAL EXPLOSIONS 

During underwater chemical explosions the weight of an explosive, G, varies from 
about lop3 kg in laboratory tests [16] to lo3 kg in the full scale tests [9], and the ambient 
pressure, pa, varies from the atmospheric pressure 100 kPa in laboratory tests [16] to 
pressures of the order of 10 MPa in deep sea tests. The bubbles produced are typical gas 
bubbles. In the case of TNT explosives the polytropic exponent is y = 1.25 [9]. The 
bubble size RM varies with G and pco [9], and the amplitude A varies with poo [2]. In a 
laboratory test, for example, with a TNT charge of a weight G = 1 g and an ambient 
pressure pa = 100 kPa, the bubble size and theoretical amplitude are RM, =0*15 m and 
A, = 2.5, respectively [ 1,2]. By means of the data given in Figure 1 one can see that even 
this smallest possible explosion generated bubble, when oscillating under atmospheric 
ambient pressure, does not belong to the class of scaling bubbles. 

Experimental amplitudes could be determined only in the case of the tests done by 
Arons et al. [17, 181. In these tests the ambient pressure was higher than the atmospheric 
one, i.e. pm = 1.68 MPa, and the weight G of the TNT charges varied from 0.23 kg to 
54 kg; hence R,,,, varied from 0.38 m to 1.08 m. The amplitude, as found in reference 
[2], was A, = 2.05. Using the similarity principle, one can verify that these bubbles should 
be scaling bubbles [l] (this was actually the reason why the experiments were performed 
at higher pm). These experimental data are shown in Figure 9. 

5.2. UNDERWATER NUCLEAR EXPLOSIONS 

During nuclear explosions extremely high temperatures occur at an epicentre. In the 
liquid these temperatures cause massive evaporation and a formation of a huge vapour 
bubble, for which the theoretical amplitude is A, = 3.29 (y = 1.25) [ 121. 

A description of a bubble produced by an underwater nuclear explosion can be found 
in reference [lo]. According to this report, the initial bubble centre was at the depth 
h = 610 m ( pa3 = 6.2 MPa), and the bubble grew to a maximum radius RMI A 115 m. For 
a bubble of this size the effect of gravity is very important. Due to it the bubble floats 
rapidly upwards and loses its spherical shape. Both the vertical motion and non-spherical 
oscillations cause high energy dissipations, and hence the real amplitude of the bubble 
oscillations is lower than the theoretical one; i.e., A, < 3.29. Unfortunately, the data given 
in reference [lo] do not allow for any closer estimation. 

5.3. SPARK AND LASER GENERATED BUBBLES 

Experimental data on spark and laser generated bubbles were evaluated in reference 
[3]. According to this study scaling bubbles were produced only in Mellen’s tests [19]. 
In this case, by using the scaling functions pzp(A, y), it was determined that for bubble 
sizes, R,, , ranging from 10.8 to 27 mm, the amplitude was A, = 3.29 (for y = 1.25 and 
pm = 100 kPa). For smaller bubbles the amplitude should decrease because of heat losses 
from the bubble. Unfortunately, functions similar to the scaling functions have not yet 
been computed for the region of heat losses. However, as a first approximation one can 
use the functions pzp(A, y) again. The smallest bubble in Mellen’s experiments, for 
example, had a size RMl = 6 mm, and the radiated (non-dimensional) peak pressure in 
the bubble pulse was prP, = 65. Using the scaling functions pZp(A, y) given in Figure 4, 
one finds that for y = 1.25 and pm = 100 kPa the corresponding amplitude is A, = 2.63. 

Other researchers have generated only such bubbles for which heat losses are important. 
In Teslenko’s tests [20,21], for example, the bubble sizes R,+,, ranged from 1 to 5 mm, 
and the peak pressure in the bubble pulse pzP, ranged from 82 to 123 [3]. Hence, using 
the functions pzp(A, y), one can determine that for y = 1.25 and pot = 100 kPa, A, ranges 
from 2.8 to 3.05. 
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Hentschel and Lauterborn [22] produced bubbles having sizes &, ranging from 2.2 
to 4 mm and peak pressures prpl ranging from 41 to 100 [3]. Hence using the functions 
pzp(A, y) one finds that for y = 1.25 and pm = 100 kPa the amplitude A, ranges from 2.4 
to 2.9. 

Vokurka [ 151 worked with bubble sizes R M, ranging from 1 a3 to 1.65 mm and amplitudes 
A, ranging from 3.0 to 3.5, as found from the bubble pulse leading edge effective widths, 
S{ (y= 1.25, pm= lOOkPa). 

Shima et al. [23] determined that a spark bubble of a size R,+,, = 3.5 mm radiated peak 
bubble pulse pressure pzP, = 120. Hence, the amplitude is A, = 3.03 in this experiment 
( y = 1.25, pm = 100 kPa). The experimental results mentioned in this subsection are dis- 
played in Figure 9, where the border points mentioned here are connected by straight lines. 

It should be noted here that, according to the bubble map given in Figure 1, even 
Mellen’s bubbles having the bubble-sizes RMl ranging from 10.8 to 27 mm and the 
amplitudes A, = 3.29 are non-scaling bubbles. But this finding must be considered with 
a certain care. First, the limits of gravity effects displayed in Figure 1 were computed 
only for y = I.33 and, second, the model used for taking the effects of gravity into account 
was a very rough one. Obviously, further research is needed to derive the limits of the 
gravity effects more accurately. 

For vapour bubbles such as the spark and laser generated ones, the polytropic exponent 
y = 1.25 is used rather arbitrarily. At the present state of knowledge it seems that one 
could just as well use the value y = 1.33 [12] or any other convenient one. Again, to 
determine “the most correct” exponent, more complete experimental data are required. 

5.4. EXPLODING AND IMPLODING HOLLOW GLASS SPHERES 

By using hollow glass spheres both gas and vapour oscillating bubbles can be generated. 
Experimental data on these bubbles have been evaluated in reference [4]. In the following 
the respective experiments are briefly discussed. 

Heuckroth and Glass [24] used an exploding glass sphere pressurized with air ( y = 1.4). 
The gas bubble grew to a maximum radius R ,+,, = 0.17 m under the ambient pressure 
pm = 100 kPa. The experimental amplitude, as determined in reference [4], was A, = 1.33. 

Popov and Kogarko [25] worked with glass spheres filled with exploding gaseous 
mixtures. The vapour bubble ( y = l-25) thus produced grew to a size R,, = 53 mm and 
the experimental collapse amplitude, as stated in reference [4], was A, =2+25 (ps = 
100 kPa). 

Orr and Schoenberg [26] used an evacuated glass sphere of the size RM, = 0.216 m. 
The sphere was filled with air ( y = 1.4) and imploded at an ambient pressure pm = 30 MPa. 
The experimental amplitude was A, = 1.55 [4]. 

Finally, Urick [27] produced an air bubble ( y = 1.4) of the equivalent radius RMl = 
48.3 mm by imploding a glass bottle under an ambient pressure pm = 4 MPa. In this case 
the experimental amplitude was A, = I.33 [4]. All these data are displayed in Figure 9. 

5.5. EXCITATION OF GAS BUBBLES BY CHANGING THE AMBIENT PRESSURE 

This excitation technique was used by Smulders and van Leeuwen [28], Jensen [29], 
Shima et al. [30], and Giilhan and Beylich [31]. (Some of the experimental data published 
by these authors have been evaluated in reference [5].) Smulders and van Leeuwen [28], 
for example, used an air bubble ( y = 1.4) of a maximum radius RMl = 1 mm. The ambient 
pressure was pm = 180 kPa, and the amplitude attained was A, = 1.33 [S]. Jensen [29] 
used an air bubble (y = 1.4) of the size RMI = 15 mm, and this bubble oscillated under 
an ambient pressure pm = 100 kPa with an amplitude A, = 1.15 [5]. Finally, Shima et al. 
[30] used an air bubble (y = 1.4) of the radius RMI = 1 mm, and this bubble was excited 
to oscillate with an amplitude A, = 3.3 (pm k 100 kPa) [5]. The data are given in Figure 9. 
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5.6. CAVITATION BUBBLES 

Experimental data on cavitation bubbles as obtained in tests by Knapp and Hollander 
[32], Chesterman [33], Schmid [34], Gallant [35], Blake et al. [36], Fujikawa and Akamatsu 
[37], and Bark and van Berlekom [38] have been evaluated in reference [6]. In these 
experiments the bubble-sizes R M, ranged from 1 to 7 mm, and the ambient pressure pm 
from approximately 2 to 70 kPa. Unfortunately, from the experimental data available, it 
was not possible to determine the experimental amplitudes of cavitation bubbles oscilla- 
tions, However, because both cavitation and spark and laser generated bubbles are vapour 
bubbles, then assuming that their amplitudes are the same, one obtains A, = 3.29 for 
y = l-25 and pa, = 100 kPa. However, due to the lower ambient pressures pp, in the 
cavitation tests, the amplitudes may also show other values. For the range of the ambient 
pressures mentioned the theoretical amplitudes can vary approximately from 3 to 5 [39]. 

5.7. LINEAR OSCILLATIONS OF GAS BUBBLES 

Strasberg [40] and Leighton and Walton [41] published experimental data on free 
linear oscillations of gas bubbles that make it possible to estimate the amplitudes of the 
oscillations. Strasberg [40], for example, reported that an air bubble (y = 1.4) of the 
volume V, = 6.9 x 10e2 cm3 (an equilibrium radius R, = 2.54 mm), when leaving a nozzle, 
produced a decaying sinusoidal pressure pulse with a peak pressure p,,, = 2.3 Pa at a 
distance from the bubble r = 1 m (see Figure 3 in reference [40]). Assuming the ordinary 
ambient pressure pm = 100 kPa, one can calculate the non-dimensional peak pressure [ 131: 
pxP, = ( p,,Jpm)r/ R, = 9 x 10e3. (Note that for linear oscillations it is convenient to use the 
X-system of non-dimensional variables [8].) Then the “linear” amplitude of bubble 
oscillations equals [ 131 A,, = p,,,/3 y = 2.2 x 10-3. (The “linear” amplitude is defined as 
A, = ( RM - R,)/ R, and is therefore related to the “non-linear” amplitude A by the simple ’ 
relation A, = A - 1.) 

Leighton and Walton [41] reported a similar experiment in which an air bubble ( y = 1.4) 
of an equilibrium radius R, = 1.7 mm produced a peak pressure pP, = 5.5 Pa at a distance 
from the bubble r = 29 mm. (The value of pP, can be estimated from Figure 5 in reference 
[41]; the value of r was kindly communicated to the author by Dr Leighton.) Since the 
ambient pressure is pm = 1.06 x lo5 Pa, one will find that pxP, = 8.8 x 10e4 and that AxI = 
2.1 x 10m4. As the amplitudes of linearly oscillating bubbles are approximately four orders 
smaller than those of non-linearly oscillating bubbles (expressed in amplitudes A,), they 
are not given in Figure 9. 

6. DISCUSSION 

Examination of Figure 9 reveals that real bubbles, for which enough experimental data 
were available to allow determination of the amplitudes, do not oscillate with amplitudes 
higher than A b 3.5, the highest amplitudes being found for spark and laser generated 
bubbles. Unfortunately, the very important class of cavitation bubbles could not be 
included in Figure 9 because of a lack of suitable experimental data. However, with 
respect to the collapse mechanism, which should be the same for all vapour bubbles, it 
can be assumed that the cavitation bubbles oscillate with the same intensity as the spark 
and laser generated bubbles. As shown in reference [6], the cavitation bubbles usually 
collapse at low ambient pressures pm (of the order of 103-lo4 Pa); and as computed in 
reference [39], in this area of pm the amplitudes of vapour bubble oscillations can be 
rather high, ranging, e.g., from 3 to 5. Of course, this theoretical assumption has yet to 
be experimentally verified. 

An interesting question arising from the above discussion is whether there may be 
bubbles oscillating with amplitudes higher than those shown in Figure 9. The cavitation 
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bubbles just discussed seem to be a case in point. From an analysis given elsewhere [5,7] 
it follows that high amplitudes can also be obtained both for gas and vapour bubbles 
when exciting them for free oscillations by increasing the ambient pressure pm. (In 
experiments this increase of poo is usually accomplished by a shock wave propagated 
through the liquid containing the bubble). The increased pressure, p&, can last relatively 
long or can be of short duration (measured by the bubble compression and collapse times 
T,). In both cases the rise time of the pressure increase, Ap, is a limiting factor. To obtain 
high amplitudes the rise time must be much shorter than T,. In the case of excitation by 
short pressure pulses the most effective excitation is obtained for a square form of the 
driving pressure pulses and for a driving pressure pulse length AT which is equal to the 
time T, [7]. However, practical difficulties associated with producing “square” waveforms 
of the duration AT= T, are obvious. A further question to be answered is whether the 
bubble remains spherical after interaction with the intense pressure pulse. 

Unfortunately, so far the potentialities of the method based on the increased ambient 
pressure have not yet been fully exploited (see Figure 9), and thus it can be said that, 
with the exception of cavitation bubbles, the vast majority of bubbles oscillate with 
amplitudes A < 3.5. This finding implies important consequences for theoretical studies. 
It follows, for example, that a simple modified Herring’s equation, which yields results 
comparable to the more complex Gilmore’s equation for amplitudes as high as A~4.5 
[42], can be used to model most bubble situations. In other words, Gilmore’s equation 
has to be resorted to only in a few special cases, such as the initial stages of underwater 
explosions or excitation of bubbles for free oscillations by strong shock waves, where the 
oscillation amplitudes are higher than A > 4.5. 

One can also compare the results given in Figure 9 with the findings of other researchers. 
Shima et al. [23], for example, found that an experimental spark bubble of a maximum 
radius RM, = 3.5 mm collapsed to a minimum radius R,, = 0.2 mm, while the maximum 
pressure at the bubble was P,v,, = 200 MPa. As the ambient pressure was pm’ 100 kPa, 
one has Z,,,, = R,,/RM, = 0.057 and P*M,/pm = 2000. Benkovskii et al. [43] found that an 
experimental spark bubble of the maximum radius R,, = 9.5 mm collapsed at a ratio 
R,,,,,/ R,, A31 so that Z,,,, = 0.032. These values compare rather well with the results of 
the present author, who, using Mellen’s experimental data [ 193, has found that the scaling 
spark bubble collapses to a minimum radius Z,,,, = 0.0307 and that the maximum pressure 
at the bubble wall is P$, = 5460 (for y = 1.25) [44]. 

Another comparison can be made with purely theoretical results. Thus Fujikawa and 
Akamatsu [45] studied theoretically the effect of the accommodation coefficient for 
WapOratiOn and condensation, (YM, on the attained minimum radius Z,,,, . For a pure 
vapour bubble of a maximum radius R M, = 1 mm they computed the following values of 
the minimum radius: if (Ye = 0.04, then Z,,,, 10.021; if CX~ = 0.01, then Z,,,, kO.05; and 
finally if CY~ = 0, then Z,,,, k O-068 (pa = 70 kPa, y = 1 a33). Again, these values of Z,, are 
of the same order as those obtained in reference [44]. 

As mentioned in section 2 there is a great variety of oscillating bubbles. Because of 
the non-linear oscillations and size-dependent effects the bubble behaviour is unique for 
each amplitude and bubble-size: i.e., one obtains unique bubble radius us. time histories 
for each A and RM. (An exception are the scaling bubbles where the bubble behaviour 
is independent of size [ 111.) Besides, the bubble’s behaviour differs for various ambient 
pressures, pm, for various liquids, and in the case of gas bubbles also for various gases 
in the bubble interior. The bubble behaviour also depends on the vicinity of other bubbles 
and boundaries, on the excitation technique used, and to a certain degree on some further 
quantities as liquid temperature, percentage of dissolved gases in the liquid, etc. 

To make things even more complicated, after passing the first minimum radius, R,, , 
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the real bubble often starts behaving in a random manner; i.e., even two bubbles having 
initially the same size, amplitude, etc., may attain different second maximum bubble radii, 
RMM2. This is due, most probably, to a random distortion of the initially spherical form 
when the bubble wall passes through R,, . It can be assumed that the distortion induces 
a turbulence in the liquid and that this turbulence is responsible for “excessive” energy 
losses. To describe the random wall distortion, a new parameter, distortion factor E, has 
been suggested in reference [4]. 

Thus the spectrum of real bubble behaviours is immensely broad which makes a 
comparison of different experimental results, a search for some order in the data, and 
finally a generalization of the data, a very difficult task. This difficulty is further increased 
by the lack of suitable experimental data. To make some progress in this extraordinarily 
complex field, research on bubble dynamics should start with the simplest possible case, 
which is an isolated, spherical, scaling bubble, oscillating (pulsating) freely and radially. 
A thorough understanding of the behaviour of such a bubble will then form a suitable 
basis for studying more complicated cases, such as non-scaling bubbles, bubbles oscillating 
near boundaries, and bubbles performing forced oscillations. (One should bear in mind 
that inclusion of any one of these effects adds another dimension to the overall complexity.) 

There are some further reasons why the scaling bubbles represent a very important 
class of bubbles. Not only is the analysis substantially simplified by excluding the effects 
dependent on bubble size, but their size is also very convenient from the point of view 
of experimental data acquisition. For larger bubbles, for example, a higher time resolution 
can be obtained, and thus finer details can be examined with a given camera framing 
rate, just because the larger bubbles move more slowly (the time of the bubble oscillation 
being directly proportional to its size). Similar considerations apply to the frequency 
response of hydrophones and associated electronic apparatus [ 11. These conveniences of 
larger bubbles may seem to be more than obvious, but examination of the literature 
reveals that experimenters do not exploit them very often. (An exception known to the 
author is some work mentioned by Blake and Gibson [46].) 

There are, of course, also upper limits regarding the optimum bubble size. These follow 
from the effect of gravity on large bubbles, from the energies involved in generating large 
bubbles, and finally from requirements as to the dimensions of the test tank. When taking 
all this into account, it seems that the optimum bubble size really coincides with that of 
the scaling bubble. 

As discussed in detail in reference [ 11, as many quantities as possible should be measured 
if one wants to arrive at a solid interpretation of the experimental data in bubble dynamics 
studies. The measured quantities can be, for example, a succession of the maximum 
bubble radii R,,,,, , RM2,. . . , of the collapse or compression times T,, , Tcz, . . . , of the 
peak pressures in the bubble pulses p,,, , pp2, . . . , and of the effective widths of the bubble 
pulses 6,) 19~, . . . . To obtain all these data, the bubble wall motion and the radiated 
pressure waves have to be monitored at the same time. This should be done simultaneously 
both with high framing/digitizing rates during short time intervals in the vicinity of R,s 
and pps to catch the details of these highly interesting regions, and with lower fram- 
ing/digitizing rates during long time intervals spanning several bubble oscillations to 
register the bubble’s overall behaviour. The ambient pressure pD should always be 
monitored. Unfortunately, such thorough investigations are very rare. Most authors 
content themselves with a tiny fraction of the suggested measurements. 

A good deal of information can also be obtained by using simpler experimental set-ups. 
Probably the simplest possible approach is by means of a hydrophone and several digital 
event recorders to monitor the times of spark and laser generated bubble oscillations 
To,,To~r..., the details of the bubble pulses, such as the effective bubble pulse widths 
QI,QZ,..., (in this case the hydrophone even need not be calibrated [15]), and the 
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peak pressures p,,i , pp2,. . . . Another very simple method is to monitor by high speed 
photography (or by an equivalent optical method) the maximum radii RM, , R,,.,*, . . . . 
However, it should be stressed here that it is totally insufficient to monitor only one bubble 
oscillation, because the information obtained-a “reversed cup” form of the bubble 
radius us. time record-has been known for more than 60 years and tells us nothing new. 

The measurements mentioned should be performed with relatively large ensembles of 
bubbles of different sizes (covering as large ranges as possible), for different ambient 
pressures, pa, liquids, excitation techniques, and in the case of gas bubbles also for 
different oscillation amplitudes and gases in the bubble interior. Thus the volume of the 
work to be done is enormous. But only when this work is performed will solid foundations 
for further research on bubble dynamics have been laid. 

To conclude, let us say a few words about the mathematical models of bubbles. In the 
literature a broad spectrum of bubble models has been described. At one end of it there 
are models as simple as Rayleigh’s models of empty or gas bubbles. These models are 
rather crude and are used only as first approximations. At the other end of the spectrum 
there are highly elaborate models, the equations of which take several pages to print. 
Writing computer programs for these models and running these programs on a computer 
is very time-demanding. Small wonder that these advanced models are by and large used 
only by their inventors (and even they do so rather limitedly) and that experimenters 
prefer using simpler models. 

As shown above, the range of real bubbles and the physical conditions under which 
bubbles exist is extremely broad. The non-existence of analytical solutions of bubble 
models implies therefore that in order to obtain more general results one has to vary the 
different physical parameters in the equations and to repeat the numerical integration for 
each new value of the parameters. This would mean an enormous volume of computations. 
Evidently, therefore, bubble models are needed that are both simple enough (to keep the 
computation time down at an admissible level) and sufficiently accurate (to obtain results 
one can trust). However, it is difficult to meet both requirements at the same time. Thus 
compromises will have to be made. 

To cope with this problem the author used several simple models [l, 2, 5, 6, 11, 12, 
14, 39, 441 that proved to be both computationally effective and (in a sense) accurate. 
These models do not pretend to compete with the advanced models used in theoretical 
studies. But only by using them was it possible to perform the hundreds of numerical 
integrations that are needed to construct the scaling functions and otherbubble characteris- 
tics and to obtain an insight into the bubble behaviour. 

7. CONCLUSION 

In this paper a classification of oscillating bubbles has been given, methods for 
evaluating experimental data in bubble dynamics have been reviewed, and data on bubble 
oscillation amplitudes have been summarized (these data having been obtained by analyses 
of all accessible experiments on bubble dynamics). It is hoped that by summarizing these 
scattered results a novel and, in a way, a unifying view on bubbles’ oscillation intensities 
has been obtained. 

It follows from Figure 9 that, in contrast to opinions sometimes held in the literature, 
the range of real bubble oscillation intensities is rather limited. This finding accords with 
other observations. For example, when analyzing the data published in the literature, one 
can see that there is no real experimental evidence for (in the theoretical literature so 
often mentioned) “supersonic velocities of the bubble wall”, “shock formations in the 
bubble pulse”, etc., these phenomena being associated with extremely intense (and thus, 
as shown here, unrealistic) bubble oscillations. However, one can note that even with the 
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intensities limited in the sense mentioned above, oscillating bubbles are remarkable 
dynamic systems performing highly non-linear oscillations hardly to be found elsewhere 
in nature. 

It was also stressed that the spherical bubble shape, taken for granted in many studies 
(including some by the present author), is only a very rough approximation to reality. 
Even bubbles that are initially spherical lose their spherical form at later stages (often in 
the vicinity of the minimum radius), and the smooth wall becomes distorted. The distortion 
then induces turbulence in the surrounding liquid and enlarges the bubble surface, thus 
increasing the energy losses from the bubble. 

In this paper, the amplitudes of only free bubble oscillations have been considered, 
and no attempt has been made to do the same for forced bubble oscillations. The reason 
for this is that forced oscillations are much more complicated and at the same time much 
less amenable to both theoretical and experimental studies than free ones, and so far the 
experimental evidence gathered is very limited. In the author’s opinion a real breakthrough 
in understanding forced bubble oscillations will be obtained only after the free oscillations 
have been thoroughly understood. 
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