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Theoretical results demonstrating the influence of the ambient pressure on free oscilla- 
tions of gas and vapour bubbles in liquids are presented. Acoustic losses, which increase 
with the ambient pressure, are shown to be a major factor influencing the overall bubble 
behaviour. The analysis reveals interesting facts about vapour bubbles, for which a 
minimum of the oscillation intensity is found at a certain ambient pressure. 

1. INTRODUCTION 

In previous papers [l-3] free oscillations of bubbles in liquids were analyzed under the 
assumption that the ambient pressure, pm, equalled the atmospheric pressure, i.e., pm = 
10’ Pa. Extensive computations were carried out for this basic condition and the results 
obtained were used in evaluating a number of interesting experimental data [4]. 

However, in many experiments the ambient pressure in the liquid differs substantially 
from the atmospheric pressure. For example, in cavitation test tunnels the ambient pressure 
during the bubble collapse is usually of the order of lo4 Pa [S-8]. In experiments with 
bubbles formed by a passage of a tensile pulse through the liquid, the bubbles usually 
collapse at an ambient pressure which is only slightly higher than the liquid vapour 
pressure, P,, i.e., pm is of the order of 103-lo4 Pa [9-121. 

In the papers mentioned above the ambient pressure was lower than the atmospheric 
pressure. However, experiments have also been recorded in which the ambient pressures 
were higher than the atmospheric pressure. For example, in investigations described by 
Smulders and van Leeuwen [ 131 the ambient pressure ranged from 1.25 x lo5 to 2.9 x 10’ Pa 
during the compression phase. Blaik and Christian [14] reported measurements relating 
to bubbles formed at great depths in the ocean by underwater explosions. In this case 
the ambient pressure was of the order of 10’ Pa. Similarly, Urick [15] and Orr and 
Schoenberg [ 161 produced oscillating gas bubbles by smashing partially evacuated glass 
spheres at great depths in the ocean. Again, the ambient pressure was of the order of 
10’ Pa. Finally, Vorotnikova et al. [17] worked with a shock tube that made it possible 
to excite gas bubbles for free oscillations by high and long pressure pulses. In these 
experiments the ambient pressure ranged from 10’ to lo9 Pa. 

Unfortunately, due to sound radiation, exact scaling is not possible between bubbles 
oscillating at different ambient pressures even for medium-sized bubbles. Hence the results 
presented in references [2,3] could be used to analyze the bubble behaviour under the 
new ambient pressure conditions only with the utmost care. It seems reasonable therefore 

t A shortened form of this paper was presented at the Euromech Colloquium 222: Unsteady cavitation and 
its effects, held at Wageningen, The Netherlands, on l-3 June 1987. 

$ Present address: Department of Research and Development, o.p. LIAZ, ti. V. Kopecktho 400, CS-466 05 
Jablonec n.N., Czechoslovakia. 

73 
0022-460X/88/ 190073 + 11%03.00/O Q 1988 Academic Press Limited 



74 K. VOKURKA 

to examine the influence of the ambient pressure on free oscillations of bubbles in greater 
detail. 

In this paper some results of numerical computations are presented, which, it is hoped, 
will throw more light on this problem. To keep the exposition as simple as possible, only 
medium-sized bubbles, for which the effects of gravity, surface tension, viscosity, and 
heat conduction can be neglected, will be discussed [ 1,181. The bubble form is assumed 
to be spherical throughout. The bubble wall motion will be described by Herring’s modified 
equation of motion which, in spite of its simplicity, yields reasonably accurate results 
[19]. The excitation for free oscillations [20], although it determines the overall bubble 
behaviour, will not be considered; rather the bubble wall motion will be followed, starting 
at the first maximum radius, RMl. Finally, the ambient pressure, pm, is assumed to be 
constant during the analysis. (A list of nomenclature is given in the Appendix.) 

2. BUBBLE MODEL 

At present several equations describing the bubble wall motion are used in the literature. 
Among them an equation due to Gilmore gives probably the most satisfactory results for 
the broadest range of bubble oscillation intensities. However, as shown elsewhere [19], 
for low and medium intensities of bubble oscillations a much simpler Herring’s modified 
equation of motion also gives reasonably accurate results (as compared to Gilmore’s 
model) with considerably less demand on computing time. As the range of intensities for 
which Herring’s modified equation can be used is sufficient for the present problem it 
will be used in this paper to save computing time. This equation of motion can be written 
as [19] 

~R+5d2=(ilp,)[P-p,+lj~/c~]. (1) 

Here R is the bubble radius, pm the liquid density, P the pressure in the liquid at the 
bubble wall, and c, the speed of sound in the liquid. The overdots denote differentiation 
with respect to time. 

An oscillating bubble radiates pressure waves into the surrounding liquid. If the 
propagation of these waves can be treated in the frame of linear acoustics, then the peak 
pressure in the first bubble pulse, pPl, at a point r in the liquid, can be expressed as [ 1,2] 

Ppl= (P&f, -~mMn,l~. (2) 

Here PIM, is the (maximum) pressure at the bubble wall when R = R,, , and R,, is the 
first minimum bubble radius. 

In the case of a gas bubble the pressure at the bubble wall equals [l-3] 

P= P,,,,(RM,/R)3’. (3) 

Here P,,,, is the (minimum) pressure at the bubble wall when R = RMl, and y is the 
polytropic exponent of the gas in the bubble. 

In the case of a vapour bubble a simple model described in detail in reference [3] will 
be used. This model is based on an assumption that at first, when the bubble wall velocity 
is low, condensation and evaporation keep pace with the bubble wall motion thus 
maintaining the pressure inside the bubble approximately equal to the liquid vapour 
pressure P,. At later stages, when the bubble wall velocity increases above a certain 
velocity, I&, it is assumed that evaporation or condensation are insignificant. Hence the 
pressure at the bubble wall can be expressed at a first approximation as [3] 

P= 
I 

P, IRI < Ifi”& 

Pu(R,,IR)3Y, Il+ldugl, 
(4) 
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Here R, is the radius at which the bubble changes its behaviour. For R > R,, the bubble 
is assumed to behave as an ideal vapour bubble (at which condensation and evaporation 
take place at an infinite speed), and for R c R, to behave as an ideal gas bubble (at 
which condensation and evaporation are zero). The value of the transition velocity, R,, 
was determined in reference [3] by comparing an experimental peak pressure in the first 
bubble pulse, pp, , with a computed one. 

That part of the vapour bubble collapse time, T,, during which the bubble behaves as 
the ideal vapour bubble, will be denoted as AT,, and the part where it behaves as the 
ideal gas bubble as AT,. Evidently, T, = AT, + AT,. The meaning of the terms just 
introduced, and of some further ones, is shown in Figure 1. 

Figure I. Time history of the vapour bubble wall motion: definition of the basic quantities 

At this stage of the discussion it is convenient to introduce non-dimensional variables. 
In this paper the compression system will be used, in which the non-dimensional quantities 
are defined as follows [ 1,2,20]: 

t; = tlW,,(p&~)“21, Z= R/RM,, P*= P/pm, 

Thus equations (l)-(4) take the forms 

Zz+3iZ= p*-l+P*z/c& (5) 

P ,,=(PL,-w,,, P* = p*,,z-‘7, (67) 

p*= PZ, I.3 < l~“,l, z ’ Z”, 
Pw”@73y, lilz+?“,l, I ZGZ”, . (8) 

The intensity of bubble oscillations may be expressed in several ways [20]. For gas 
bubbles oscillating in the compression system the natural intensity measure is the initial 
gas pressure, P*,, . However, for the purpose of comparison of different excitation 
techniques and for comparison with vapour bubbles it is convenient to use the amplitude 
of oscillations, A, = R,,/R,, where R, is the equilibrium radius defined by the condition 
that P* = 1 when R = R, [I]. In the simple case considered here (equation (7)) one has 
A, = ( P:,)-“3y. 

In the case of vapour bubbles the intensity measure P*,, cannot be used [3], and it is 
the amplitude A, which now represents a suitable measure. However, now the “equilibrium 
radius” has lost its meaning as a radius the bubble wall approaches when t, + ~0 [21]. 
Nevertheless, the equilibrium radius can still be defined (and computed) from the 
condition that P* = 1 when Z = Z,. Note that in the compression system one has A, = l/Z,. 
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3. RESULTS 

Qualitative information on gas bubble behaviour at different ambient pressures can be 
obtained in the following way. Consider for a moment a bubble oscillating in a non- 
compressible liquid (i.e., Rayleigh’s model [I, 201). In this case, and only in this case, 
scaling between different ambient pressures is possible. (Scaling means that results 
obtained at one ambient pressure can be transformed to other ambient pressures by a 
simple change of the scales by which the respective quantities are measured [1, 181). 

The quantities of interest in the investigation under discussion are the wall velocity d 
and the acceleration R. In terms of the non-dimensional solution of Rayleigh’s model 
these quantities can be expressed as k = Z(p,/pm)“* and k = Z(pcn/pW). From these 
relations one can see that when the value of pz, is increased while the values of Z, Z and 
poo are kept constant, the wall velocity and acceleration also increase. However, as the 
radiated pressure wave is directly proportional to d and 2 [l], the radiated acoustic 
energy also increases with pm. Evidently, bubbles with different acoustic losses are not 
similar, and scaling therefore, as anticipated, is really not possible. But it also follows 
that in more appropriate bubble models, the non-dimensional first minimum radius, Z,,,, , 
and the time of the first bubble compression, 7’,,, , must increase with pa due to increased 
acoustic losses. On the other hand, the maximum pressure, P*MI, the peak pressure in 
the bubble pulse, pzPl, and the second maximum radius, ZM2, must decrease with pm. 
As will be seen later, this simple qualitative analysis fully accords with numerical results. 

The behaviour of vapour bubbles is, due to the collapse mechanism [3], not as clear as 
that of the gas bubbles. A simple qualitative analysis similar to the one presented above 
is thus not possible. However, a detailed discussion will be given later on. 

3.1. GAS BUBBLES 

Equations (5)-(7) were solved for different values of the initial pressure, P$,, , and of 
the ambient pressure, pm. For each computer run the following quantities were recorded: 
Z ml, Tzc19 pjrM19Prpl, and (Ye, the damping factor, which in the compression system equals 
the second maximum radius, i.e., (Y, = Z,, [2]. Variations of these quantities with pm are 
shown in Figures 2-6. Note that the initial gas pressure Pzl, which is a parameter in 
these plots, represents an intensity of bubble oscillations (as shown above, P*,, can easily 
be converted to the amplitude A,), i.e., the individual curves in Figures 2-6 correspond 
to constant amplitudes A,. Computations were performed for water (pm = lo3 kg rnm3, 
c, = 1450 m s-‘) and for a gas having polytropic exponent y = 1.25. As can be seen from 
Figures 2-6, the numerical results do conform with the simple qualitative analysis presen- 
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Figure 2. Variation of the first minimum radius, Z,,,, , with the ambient pressure, pm, for gas bubbles. 
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ted above. It may be added that the quantities Tz,, , pzP, and LY, can be determined 
experimentally and can thus be used to validate the present theories. 

3.2. VAPOUR BUBBLES 

In this case equations (5), (6) and (8) were solved for different values of the ambient 
pressure p=. For each computer run the same quantities as above were recorded. For 

- “lo* 0 e 
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Figure 3. Variations of the first compression time, Tz,, , with the ambient pressure, pm:. fo; gas bubbles. 
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Figure 4. Variation of the first maximum pressure, I’%,, with the ambient pressure, pm, for gas bubbles, 
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Figure 5. Variation of the peak pressure in the first bubble pulse, p_, , with the ambient pressure, pm, for 
gas bubbles. 
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Figure 6. Variation of the first damping factor, a,, with the ambient pressure, p=,. for gas bubbles. 

reasons given later it was also found useful to record the values of AT,,, , AT,,, and Z,, . 
The computations were performed again for water (P, = 2 kPa, Id,,] = 6 m SC’, y = 1.25 
[3]). Variations of the computed quantities with pa; are shown in Figures 7-12. 

It is possible now to give an interpretation of the results presented in Figures 7-12. 
First, it should be recalled that the individual curves shown in Figures 2-6 correspond 
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Figure 7. Variation of the first minimum radius, ZP., , with the ambient pressure, pm, for vapour bubbles. 
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Figure 8. Variation of the first collapse time, T,,., , and of the times AT,,, , AT,,, , with the ambient pressure, 
pan, for vapour bubbles. 
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to the constant amplitudes of bubble oscillations and that for a particular pX the gas 
bubbles can be excited to oscillate with different amplitudes A,. In contrast to this the 
vapour bubbles can oscillate with only one amplitude A, at a given ambient pressure pX 
and this amplitude varies with pm (cf. Figure 12). This can be explained as follows. 

From Figure 8 one can see that at low ambient pressures pm, the time AT,,, , during 
which the bubble behaves as an ideal vapour bubble, increases if the pressure p,, is 

I 
103 I I 

103 IO’ IO” 106 

Amblent pressure, pm (Pa) 

Figure 9. Variation of the first maximum pressure, P$,, , with the ambient pressure, pm, for vapour bubbles. 
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Figure 10. Variation of the peak pressure in the first bubble pulse, pIP,, with the ambient pressure, p_, for 
vapour bubbles. 
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Figure 11. Variation of the first damping factor, CY,, with the ambient pressure, pm, for vapour bubbles. 
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Figure 12. Variation of the first amplitude of the vapour bubble oscillation, A,, with the ambient pressure, pm. 

decreased. Recall here that for the ideal vapour bubble the pressure at the bubble wall 
equals P = P, [3]. If P = P, during the whole collapse phase, one obtains Rayleigh’s 
model of an “empty” bubble for which A, + CO [ 11. Thus the larger the portion of TzC, 
that goes to AT,,, , the more the bubble behaves as an empty bubble and the larger the 
amplitude A, . 

On the other hand, at high ambient pressures pm, the time AT=*,, during which the 
bubble behaves as an ideal gas bubble, is much larger than AT,,, . Thus the bubble behaves 
as a gas bubble during most of its life. Then keeping P, constant while increasing poo 
causes the initial pressure, P*,, - P,/pos, to be decreased, and hence the amplitude A, to 
be increased. Note that at medium pressures pm, the times AT,,, and AT,,, are approxi- 
mately the same and the amplitude A, is minimum. This situation occurs for pressures 
approximately pa = 30 kPa. 

From the foregoing discussion it follows that for vapour bubbles the changes in pa 
also influence the value of A,. Apart from that, it is known that both the pressure poo 
and the amplitude A, have direct influence on the acoustic losses. For higher pressures 
pm these losses grow due to the increase in both the amplitude A, and the influence of 
pm on the acoustic radiation (see Figure 6). For low pressures pa the losses decrease due 
to the influence of the pressure pm on the acoustic radiation and the inherently low 
acoustic radiation of the ideal vapour bubble. (In the ideal vapour bubble, acoustic 
radiation results from the dynamic motion of the bubble wall only, and this motion is 
rather slow for most of the collapse phase, i.e., IdI C 6 m s-‘. There is no pressure wave 
component communicated from the vapour into the liquid [ 11. Thus the larger AT,,, , the 
smaller the radiated energy.) 

The particular features of the curves displayed in Figures 7-l 1 are thus determined by 
a combination of the effects mentioned above. In some situations it is the increase of the 
amplitude A, that plays the decisive role; in others the effect of acoustic losses may prevail. 

4. DISCUSSION 

In this paper a simple bubble model based on the modified Herring’s equation of 
motion (1) and on the assumption of an ideal gas (equations (3) and (4)) has been used. 
By using Gilmore’s equation of motion [19] and a two-gamma equation of state for the 
gas [22] it would certainly be possible to improve the accuracy of computations at higher 
pressures. However, in the author’s opinion, such improvements do not carry far. As 
shown elsewhere [2,4,22], as well as acoustic losses there are further energy losses even 
for medium-sized bubbles. These losses may account for as much as 50% of the total 
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dissipated energy during the first compression and expansion phase. A presence of these 
losses in real bubbles was determined by a detailed breakdown of all the known energies 
associated with the bubble oscillations and by comparing the theoretical and experimental 
data (for details see reference [2]). Recent investigations carried out by the author indicate 
that these losses have a universal character, i.e., they are present in any kind of non-linearly 
oscillating bubbles. Unfortunately, the nature of the losses has not been clarified yet. In 
the literature various possible dissipative mechanisms have been suggested. Among them 
are [22]: (i) turbulence induced in the water surrounding the bubble, (ii) loss of gas from 
the main bubble, (iii) excessive cooling in the protuberances, and (iv) internal converging 
shocks. 

As the unknown losses amount to almost half of the total losses, their omission from 
the analysis makes any model, even if it is a model that approximates the liquid compressi- 
bility and gas behaviour as precisely as possible, very imperfect. A simple model such as 
the one considered here then seems to be more than adequate, since all that one can 
often deduce about bubble dynamics are trends only. In other words, improvements of 
a few percentages are considered to be insignificant in view of the overall uncertainty of 
about 50%. 

For all that, in order not to increase the error excessively, the curves displayed in 
Figures 2-12 were computed only for the limited range of parameters poo and P*,, . At 
higher pressures pm the limitations follow from equations (3) and (4) which are valid for 
ideal gases only. Real gases behave as ideal ones for pressures lower than lo*-lo9 Pa 
[23], and hence the computed maximum pressure, PM,, should not exceed this limit by 
too much. 

At lower pressures pm the first restriction is that pm> P,. (If pa< P, the bubble grows 
due to evaporation of the liquid into the bubble.) For gas bubbles the second restriction 
is that P,,,, > P,. Unless this holds, evaporation of the liquid into the bubble changes pure 
gas bubbles into gas-vapour bubbles, and such mixed bubbles are not treated in this 
context. 

In computing the curves presented in Figures 2-12 the excifution techniques have not 
been considered. However, when considering real-life situations, excitation techniques 
should be taken into account because they determine the actual amplitudes of bubble 
oscillations. With underwater explosions [14], for example, an increase in the ambient 
pressure will suppress the amplitude with which the generated bubbles oscillate. On the 
other hand, with the shock tube method [17], an increase of pm implies that at the same 
time the amplitude of the bubble oscillations is also increased. 

An interesting feature found for vapour bubbles is that at a certain pressure pm there 
is a minimum of bubble oscillation intensity (see Figure 12). This finding may be important 
with respect to cavitation erosion and therefore it would deserve a more detailed investiga- 
tion with use of a bubble model, taking into account the influence of a solid boundary. 
Fortunately, the minimum seems to occur near the pressure pm under which the hydraulic 
equipment is often operated [5-81. 

A general conclusion which can be drawn from Figures 4 and 9 is that very high 
pressures PM, can be generated by increasing the ambient pressure pa. (Note that 
PM, = PL,pm; thus PM, increases even if PSI decreases with pm.) This also may be an 
important factor when considering the damage the oscillating bubbles cause to nearby 
objects. 

Note also that, for vapour bubbles, there are always two values of the pressure pm to 
be found for which the amplitudes A, and the maximum temperatures of the vapour in 
the bubble are almost the same. However, the maximum pressures PM, and the radiated 
acoustic energy differ substantially in the two cases. 
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5. CONCLUSION 

In the paper theoretical data have been presented to demonstrate the influence of the 
ambient pressure on the behaviour of gas and vapour bubbles. Unfortunately, the experi- 
mental data published in the literature are rather scarce so that it has not been possible 
at present to check the validity of the theory. 

It was found that by increasing the ambient pressure pm, very high maximum pressures 
PM, and damping factors LY, result. Another interesting observation is that there is a 
pressure pm for which the vapour bubbles oscillate with minimum intensity. This finding 
may be important with respect to cavitation erosion. 

The results presented can be used in evaluating the experimental records published in 
references [5-171 (the author intends to present examples of such evaluations elsewhere) 
and in predicting the bubble behaviour for different environments. 
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APPENDIX: NOMENCLATURE 

In this list of nomenclature the first and second symbols denote dimensional and non-dimensional 
quantities, respectively. The numbers in subscripts (omitted in the nomenclature but used in the 
text) denote the oscillation period. 

1, t, 
R, Z 
RM, ZM 
Rm , Zm 
Re, Ze 
&., z,, 
II, .2 
f$’ -G 
R.2 
P, P* 
PM, et 
P,,,, pt 
P”, pt 
Pp 3 P.-p 
T 1 Tz< 
AT,, AT;, 
AT,, AT,, 

* c,, c, 
A 

P,X 
PK 
r 
Y 
a 

time 
bubble radius 
maximum bubble radius 
minimum bubble radius 
equilibrium bubble radius 
transition radius between ideal vapour and ideal gas bubble behaviour 
bubble wall velocity 
transition velocity between ideal vapour and ideal gas bubble behaviour 
bubble wall acceleration 
pressure in the liquid at the bubble wall 
maximum pressure 
minimum pressure 
liquid vapour pressure 
peak pressure in the bubble pulse 
collapse or compression time of the bubble 
interval during which the bubble behaves like an ideal vapour bubble 
interval during which the bubble behaves like an ideal gas bubble 
speed of sound in the liquid 
amplitude of oscillation 
ambient pressure in the liquid 
liquid density 
point in the liquid 
polytropic exponent of the gas or vapour in the bubble 
damping factor 


