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A simple yet reasonably accurate vapor bubble model based on switching between an empty 
bubble and a gas bubble is introduced. The switching bubble wall velocity is determined by 
adjusting the theoretical model to experimental data. A comparison with gas bubble models is 
given. 
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INTRODUCTION 

By definition, a pure gas bubble is assumed to contain in 
its interior only a noncondensable gas. •.2 The theory of gas 
bubbles is rather well elaborated and there are numerous 

publications covering this subject (see, e.g., Refs. 3 and 4). 
A pure vapor bubble, on the other hand, is assumed to 

contain only the vapor of the surrounding liquid. •'• Further- 
more, it is assumed that, at some stages of the vapor bubble 
life, condensation or evaporation takes place. Over the years 
a number of vapor bubble models have been described in the 
literature. These models differ primarily in assumptions 
about the speed at which the processes of condensation and 
evaporation are assumed to take place. The simplest vapor 
bubble model assumes that condensation and evaporation 
can take place at an infinite speed. 5 In such a model, which is 
practically identical with Rayleigh's model of an empty bub- 
ble, 6 the bubble grows to a maximum radius and then col- 
lapses. At the final stages of the collapse, when the bubble 
wall approaches the bubble center, the wall velocity and ac- 
celeration grow to infinityfi Although this model is evidently 
unrealistic, its simplicity makes it rather attractive. 

A somewhat better approximation is based on the as- 
sumption that the speed of condensation and evaporation is 
zero. In this case the vapor bubble is modeled by a gas bub- 
ble. Because of its simplicity, this model is rather often 
used, 7-9 but its limitations are obvious. 

Apart from the two approaches mentioned, there are a 
number of works which endeavor to model the vapor bub- 
bles as realistically as possible. •ø-•3 Unfortunately, these 
models are rather complicated and hence time demanding. 

The objective of this paper is to present a model which, 
on one hand, is more realistic than the oversimplified empty 
and gas bubble models, but which, on the other hand, retains 
their simplicity. To keep the exposition as simple as possible, 
we will consider only medium-sized spherical bubbles, for 
which the effect of gravity, surface tension, viscosity, and 
heat conduction can be neglected. 6'14 

I. THE EQUATION OF MOTION 

The formulation of the bubble model can be made in two 

steps. First, it is necessary to find an approximation for the 
bubble content behavior. This will be done in Sec. II. Second, 

Present address: Zdefika Nejcd16ho 25, Jablonec n.N., 466 04 Czechoslo- 
vakia. 

the liquid behavior must be described in a suitable way. Such 
a description results in the equation of motion for the bubble 
wall and in equations of the pressure and velocity fields. The 
equation of motion can be derived from governing hydro- 
dynamical relations, and the bubble content behavior enters 
this equation only through the boundary value. 

A number of equations of motion have been given in the 
literature (see, e.g., Refs. 4 and 15 ). These equations differ, 
first, with regard to the accuracy with which the liquid com- 
pressibility is approximated. In this paper we shall work 
with Herring's modified equation, which has the form •5 

•R+• •2= (P--P•o +PR/c•o)/p•o ß (1) 
Here, R is the bubble radius, poo is the liquid density, Pis the 
pressure in the liquid at the bubble wall, poo is the ambient 
pressure in the liquid, and c•o is the velocity of sound in the 
liquid. The overdots denote differentiation with respect to 
time. 

Equation ( 1 ), in spite of its relative simplicity, performs 
rather well and gives satisfactory results for a broad range of 
bubble oscillation intensities. is As will be shown later (eft 
Table II), the vapor bubbles oscillate with intensities for 
which the use of Eq. ( 1 ) is fully justified. 

An oscillating bubble radiates pressure waves into the 
surrounding liquid. If the propagation of these waves can be 
treated in the frame of linear acoustics, then the peak pres- 
sure in the bubble pulse pp equals 6 

Pp = Ps• -- P• = ( Ps• -- P• )R,•/r. (2) 
Here, œs• is the maximum pressure in the bubble pulse at a 
point r, R,, is the minimum bubble radius, and Ps• is the 
(maximum) pressure at the bubble wall when R = R,•. 

II. BUBBLE COLLAPSE 

Let us assume that a bubble has been excited and begins 
to grow.•6 After reaching a maximum radius RM, the bubble 
wall starts moving inwards. In the case of vapor bubbles this 
inward motion is usually referred to as the bubble collapse, 1 

If the bubble collapse is modeled by an empty bubble, it 
is then assumed that the pressure and temperature at the 
bubble wall remain constant; i.e., one assumes • 

P=Pv, 0=0o•, (3) 

where Po is the liquid vapor pressure and 0•o is the liquid 
temperature. 

If the vapor bubble behavior is modeled by agas bubble, 
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the equations for the pressure and temperature at the bubble 
wall have the form, respectively, ?-9 

P =Pm (R•t/R)•r, (4) 

19 = 19 • (R•t/R) 3•r- • (5) 

Here, Pm is the minimum pressure (i.e., when R = RM ) at 
the bubble wall and 7/is the polytropic exponent of the vapor. 

Since in real vapor bubbles the rate at which the process 
of condensation takes place is always finite and nonzero, it is 
expedient to divide the bubble wall velocities and positions 
into two regions. If the wall velocity • in the vicinity of the 
maximum radius R M is lower than a certain velocity J•, we 
can assume that the process of condensation takes place at 
such a speed as to maintain the pressure in the bubble interi- 
or P equal to the vapor liquid pressure Pv and the vapor 
temperature 19 equal to the liquid temperature 19•. Thus, in 
this low-velocity region, which is defined by the condition 
that [J• [ < [J•s [ and simultaneously R >Ros, we use Eqs. 
(3). 

On the other hand, if the wall velocity J• exceeds the 
velocity J•os, we shall assume that there will be no condensa- 
tion at all, which means that the bubble starts behaving like a 
gas bubble. Thus, if IJ• I• and R •R,•, we have 

p = p• (Ros/R)3r, (6) 
19 = 19oo (Res/R) 3(r- 1) (7) 
Let us note that this conditional switching between Eqs. 

(3) and (6) and (7) can be easily programmed on a digital 
computer. Also, the respective equations were formulated 
independently of any assumption on the liquid compressibil- 
ity, and thus they can be used in conjunction with any equa- 
tion of motion for the bubble wall. 

III. NUMERICAL RESULTS 

For further work, it is convenient to introduce nondi- 
mensionai variables. In this paper, the nondimensional radi- 
us, time, pressure, and temperature at the bubble wall, and 
the peak pressure in the bubble pulse, respectively, are de- 
fined as6 

z=R t , tz= P*=P, 

0 (p•/p•)r 
• * = p•p = 

Using these nondimensional variables, •s. (1)-(7) now 
•ke the fo• 

* ,, - /c• (8) 

p• = (P• - •)z•, (9) 

where, if [2 [ < [2o• [ and Z > Z•, the pressure P* equals 
P* =P•. (10) 

B•ides, it holds that 

•*=1. (11) 

If [2 [ •os [ and Z<Z•, the pressure P * is •ven by the rela- 
tion 

P* = P•(Z•/Z) • , (12) 

TABLE I. Computed values of significant bubble wall positions. 

//= 1.25 ¾ = 1 33 

P• 0.02 0.02 0.012 0.02 0.02 0.0067 

•n -0.6 ....... 0.91 ...... 
Z,• 0.864 ...... 0.761 ...... 
Z• 0.304 0.352 0.304 0.286 0.376 0.286 
Z,• 0.0307 0.0464 0.0306 0.0343 0.0706 0.0342 

and the temperature equals 

O* = (Z•/Z) 3<r- • (13) 
Finally, in the case of the gas bubble, we have 

P* = P*•Z - 3r (14) 
and 

O*=Z -3•- •) (15) 

The nondimensional velocity c*• in Eq. (8) is defined as c*• 
=c• (p•/p•)•/•. 

To determine the velocity Zog and the corresponding 
position Zn, a number of trial computations with Eqs. (8)- 
(10) and (12) were performed. In these computations the 
value of •og was varied and the computed peak pressure in 
the bubble pulse compared with the experimental value 
p,p = 167, as measured by Mellon •7 (see Ref. 18 for further 
details). 

The computations were performed with the following 
values of physical constants (water under ordinary laborato- 
ry conditions): 

p• = 100kPa, p• = 10*kgm -•, c•o = 1450ms -• , 
P, = 2kPa, 0• = 293 K, 7/= 1.25, and 7/= 1.33. 

The initial conditions of Eq. (8) were Z(0) = 1, •(0) = 0. 
It was found that a satisfactory fit to the peak pressure 

p.,p = 167 is obtained when •vg = --0.6 (7/= 1.25) and 
Zn = -- 0.91 (7/= 1.33). The significant positions of the 
bubble wall computed for these values of•,• are given in the 
first and fourth columns of Table I. In Table I, Z, is an 
equilibrium radius defined by the condition that P*= 1 
when Z = Z, (cf. Ref. 6). Also given in Table I are the 
values of the significant positions computed with the vapor 
bubble models based on the gas bubbles. In this case the 
pressure P * is given by Eq. (14). These computations were 
performed both for P *• equal to the liquid vapor pressure P o* 
(the second and fifth columns in Table I) and for P*m deter- 
mined from a condition that both the vapor and gas bubbles 
have the same amplitude of oscillations A = R•/R, (the 
third and sixth columns in Table I). Note that the values of 
P*m given in Table I are rounded off in this case. The full 
values may be found from the relation P*m = Z? (cf. Ref. 
16). 

IV. COMPARISON OF MODELS 

The values of significant positions given in Table I can 
be substituted into the definition equation for the amplitude 
of bubble oscillations.4 = Rs•/R• = 1/Z• and into Eqs. (9) 
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TABLE II. Computed values of significant bubble parameters. 

1.25 y = 1.33 

P*• 0.02 0.02 0.012 0.02 0.02 0.0067 
,4 3.29 2.84 . 3.29 3.50 2.66 3.50 

Pzp 167 93 168 166 57 167 
P• 5460 2000 5480 4830 800 4880 
0•t 12.2 10.0 13.7 22.2 14.2 29.2 
0• (K) 3580 2930 4000 6500 4150 8560 

and (12)-(15). The results obtained in this way are sum- 
marized in Table II. 

When comparing the data presented in Tables I and II, 
we note several interesting facts. First, it can be observed 
that if the vapor bubble is modeled by the gas bubble and the 
pressure P*• is set equal to P •*, the resulting amplitude of the 
bubble oscillations is relatively small, So that the computed 
peak pressurep,p is much lower than the measured pressure. 

It is only because of the amplifying collapse effect that 
the vapor bubble attains a larger amplitude--and hence a 
higher maximum pressure and temperature--than the gas 
bubble having the same minimum pressure P*m = P •*' 

If we model the vapor bubble by a gas bubble having the 
same amplitudes4, we find that the pressurespzp, P • and the 
radii Z,, Zm are almost the same for the two models. The 
only larger difference lies in the values of the minimum pres- 
sure P*• and the maximum temperature 0 •. 

However, it is in these values that the vapor bubble mod- 
el provides more realistic results. Specifically, it should be 
stressed here that in no bubble can the pressure drop under 
the liquid vapor pressure at the given temperature. If the 
ambient pressure does drop under Pv, e.g., due to a tension 
wave, the liquid at the bubble wall will immediately start 
boiling ]9 and the evaporation which thus results will main- 
tain the minimum pressure in the bubble equal to Pv. Be- 
cause of this, the values Pm < Po are physically unrealistic 
and, even if they are sometimes used for pure computational 
purposes, care must be taken when interpreting the results. 

Let us also note that the maximum temperature 0st in 
the vapor bubble is somewhat lower than in the gas bubble 
oscillating with the same amplitude. This is due to the tem- 
perature retardation associated with the collapse mecha- 
nism. However, it seems that even this lower temperature 
may be sufficient to produce sonoluminescence. 2ø 

V. CONCLUSION 

The purpose of this paper was to introduce a simple, yet 
reasonably accurate, vapor bubble model. This model can 
easily be programmed on a digital computer and allows for 
fast and efficient computations. As we want to show else- 
where, the model may also help to explain several interesting 
facts connected with concrete excitation techniques where 
application of the gas bubble models leads to inappropriate 
results. 

It was found that a satisfactory fit to the experimental 
peak pressure p.,p = 167 is obtained when •,og = --0.6 
(y= 1.25)andZ• = --0.91 (7/= 1.33). These wall veloc- 
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ities are in good agreement with the values determined in a 
different way by Piesset, • who found that •,og = -- 0.8, and 
by Flynn, 2] who determined that Zog = 0.85 
(•g = -- 0.65). 

The isentropic exponent of the vapor y is in no case 
constant for the range of pressures and temperatures consid- 
ered. 22 Therefore, the constant 7/used here should rather be 
regarded as a parameter affording a useful fit of simplified 
theory to experimental results. For this reason, the computa- 
tions were performed with two values of 7 which we felt were 
reasonably representative for the range coi•sidered. Evident- 
ly, further experimental data are necessary in order to deter- 
mine which of these values is more suitable for the present 
problem. 

In certain situations it may be convenient to model va- 
por bubbles by gas bubbles. This occurs, for example, when 
determining the amplitude of vapor bubble oscillations from 
experimental data by means of scaling functions computed 
with gas bubbles. •7 However, a great deal of Care is necessary 
when considering the vapor bubble excitations because in 
this case the gas bubble model may yield highly erroneous 
results. 

•M. S. Piesset, "Bubble Dynamics," in Cavitation in RealLiquids, edited by 
R. Davies (Elsevier, Amsterdam, 1964}, pp. 1-18. 

•H. G. Flynn, "Physics of Acoustic Cavitation in Liquids," in Physical 
,4coustics, edited by W. P. Mason (Academic, New York, 1964), Vol. IB, 
See. 1.2. 

•M. S. Pleaset and A. Prosperetti, "Bubble Dynamics and Cavitation," 
Ann. Rev. Fluid Mech. 9, 145-185 (1977). 

hA. Prosperetti, "Bubble Phenomena in Sound Fields: Part One, Part 
Two," Ultrasonics 22, 69-77, 115-124 ( 1984 ). 

SM. S. Plesset, "The Dynamics of Cavitation Bubbles," Trans. ASME J. 
Appl. Mech. 16, 277-282 (1949). 

•K. Vokurka, "On Rayleigh's Model of a Freely Oscillating Bubble. I. Ba- 
sic Relations. II. Results. III. Limits," Czech. J. Phys. B35, 28-40, 110- 
120, 121-132 (1985). 

?W. Lauterborn, "Laser-Induced Cavitation," Acustica 31, 51-78 (1974) 
(in German). 

aA. Shima and Y. Tomita, "The Behavior of a Spherical Bubble Near a 
Solid Wall in a Compressible Liquid," Ing.-Arch. $1, 243-255 ( 1981 ). 

9p. I. Golubnichii, V. M. 13romenko, and A.D. Filonenko, "Recombina- 
tion Mechanism for Emission Accompanying Collapse of a Cavitation 
Bubble Induced by a High-Voltage Electrical Discharge," Zh. Tekh. Fiz. 
•2, 1966-1971 (1982) (in Russian). 

•øS. A. Zwick and M. S. Pleaset, "On the Dynamics of Small Vapor Bubbles 
in Liquids," J. Math. Phys. 33, 308-330 (1954). 

t•T. Mitchell and F. 13. Hammitt, "On the Effects of Heat Transfer upon 
Collapsing Bubbles," Nuel. Sci. Eng. 83, 263-276 (1974). 

12y. Tomira and A. Shima, "The Effects of Heat Transfer on the Behavior 
of a Bubble and the Impulse Pressure in a Viscous Compressible Liquid," 
Z. Angew. Math. Mech. $9, 297-306 (1979). 

3Y. Matsumoto and A. E. Beylich, "Influence of Homogeneous Condensa- 
tion Inside a Small Gas Bubble on Its Pressure Response," Trans. ASME 
J. Fluids Eng. 107, 281-286 (1985). 

•nK. Vokurka, "The Scaling Law for Free Oscillations of (}as Bubbles," 
Acustica 60, 269-276 (1986). 

l•K. Vokurka, "Comparison of Rayleigh's, Herring's, and 13ilmore's Mod- 
els of (}as Bubbles," Acustica $9, 214-219 (1986). 

•K. Vokurka, "Excitation of Gas Bubbles for Free Oscillations," J. Sound 
Vib. 106, 275-288 (1986). 

•7R. H. Mellen, "An Experimental Study of the Collapse of a Spherical Cav- 
ity in Water," J. Acoust. So:. Am. 28, 447-454 (1956). 

•aK. Vokurka, "A Method for Evaluating Experimental Data in Bubble 
Dynamics Studies," Czech. J. Phys. B36, 600-615 (1986). 

•G. I. Taylor and R. M. Davies, "The Motion and Shape of the Hollow 

Karel Vokurka: A simple model of a vapor bubble 60 



Produced by an Exploaion in a Liquid," in The Scientific Paper• of Sir G. L 
Taylor, edited by G. K. Batchelor (Cambrid•te U. P., Cambridge, 1963), 
Vol. m, •,. 337-353. 

•øL. A. Crum and G. T. R•ynolds, "Sonoluminescance Produced by 'Stable' 
Cavitation," $. Acouat. Soc. Am. 78, 137-139 (1985). 

a'H. •3. Flyma, "Physiea of Acoustic Cavitation in Liquids," in Physical 
Acoustics, edited by W. P. Mason {Academic, New York, 1964), Vol. 
Sec• 2.4. 

•$. H. Keenan and F. G. Keyes, Thermodynamic Properties of Steam (Wi- 
ley, New York, 1936), Fig. 8. 

61 J. Acoust. Soc. Am., Vol. 81, No. 1, January 1987 Karel Vokurka: A simple model of a vapor bubble 61 


