A METHOD FOR EVALUATING EXPERIMENTAL DATA
IN BUBBLE DYNAMICS STUDIES*)

K. Vokurka**)

Department of Physics, Faculty of Electrical Engineering, Czech Technical University,
Suchbdtarova 2, 166 27 Praha 6, Czechoslovakia

Free oscillations of gas bubbles in compressible liquids are analysed. Gilmore’s model is used
to compute the scaling and independent functions that make it possible to evaluate experimental
data. The method is illustrated by examples. A possibility of using the scaling functions for
determination of the bubble pulse spectrum is also demonstrated.

1. INTRODUCTION

In previous works [1—3] we have suggested a use of the scaling and independent
functions to evaluate the unknown parameters of bubbles freely oscillating in liquids.
It has also been shown that Rayleigh’s model, thanks to its simplicity, enables one
to gain a necessary qualitative insight into the bubble behaviour with relative ease.
However, due to the assumption of liquid incompressibility the quantitative results
obtained with Rayleigh’s model are valid only for moderate amplitudes of bubble
oscillations [4].

In this paper we want to extend the analysis of the bubble behaviour to cover
the compressible liquids so that the method developed in [1—3] can be used to evalu-
ate the experimental data for a much wider range of amplitudes of bubble oscillations.
For this purpose the scaling and independent functions are calculated here with the
use of Gilmore’s model [4].

Though the method can be applied to bubbles of any size, to take an advantage
of the scaling law [5], only the scaling, i.e. the medium-sized bubbles, will be con-
sidered here. '

In order to illustrate the potentialities of the method, experimental data found
in the literature will be used to determine the unknown parameters in particular
cases of the explosion and spark generated bubbles.

2. FORMULATION

Let us consider a spherical gas bubble situated in a liquid far from boundaries
and freely oscillating. In this work the method of the bubble excitation for free
oscillations [6] will be immaterial and the analysis starts at the moment the bubble
attains a maximum radius Ry. We shall be interested in the processes associated
with the bubble wall motion between two successive radius maxima, e.g. between

*) This work is taken from the author’s Ph. D. dissertation [25] and in a shortened form it
was also presented at the seminar on cavitation [26].
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Ry and Ry,. Evidently, the analysis can easily be extended to include any two
successive maxima. Hence, to simplify the notation, the digits denoting the oscillation
period will often be omitted from the subscripts.

An example of the bubble wall motion is given in fig. 1. A corresponding energy
equation for the bubble can be written in the compression system as [1—3]

(1) AE, = AE; + E, + AE,.

Here E, is the liquid kinetic energy, and AE, the dissipated energy. The change in the

potential energy of the bubble, 4E,, equals

M1

(2) AE, = §mp Ry [1 - (—R—>3],

and the change in the internal energy of the gas, 4AE;, can be written as

1 PmlRl:;ll l:(
y—1

=3(y—1)
_R_> _ 1} ,
Ry

Here p,, is the pressure in the liquid at a large distance from the bubble, 7y is the
ratio of the specific heats, and P, is the pressure at the bubble wall when R = Ry;.

An oscillating bubble radiates pressure waves into the surrounding liquid. A wave
radiated between two successive radius maxima is usually called the bubble pulse
[7—-9]. The form of the bubble pulse is schematically shown in fig. 2.

Let us denote the acoustic energy radiated by the bubble in the time interval
from ¢, to t, by AE, and the acoustic energy passing through a sphere of a radius
r > Ry, by 4E, (thanks to the propagation losses AE, < 4E,). Then we can write

4 AE, = 4nr’F
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Fig. 1. Radius of the bubble, R, as a function
of time, t.
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where F is the acoustic energy flux, which equals [8, 9]

1 to
J pZ dt.
QxCu J1ta

Here c,, is the velocity of sound in an undisturbed liquid, ¢, is the liquid density
at a large distance from the bubble, and p, = p — p,, is the acoustic pressure in the
wave at the point 7. For moderate intensities of the bubble oscillations p, can be
conveniently computed from a simple formula that was given in work [1]

In [1] the effective pulse width, 9, was defined by the relation

t2
(6) 9=%J p2dt,
. pp t1

where p, is the peak acoustic pressure in the bubble pulse and t,, t, correspond
to two successive moments at which the valley pressures, p,, occur in the wave (fig. 2).

Finally let us define the damping factor, «,, for the wall motion between Ry, and
Ry 88 '

(7) o = 22,

" For further work it is convenient to introduce the compression non-dimensional
variables [1, 6]:

fy = ———— E R _ P

O ? Ez = ’ Z = ’
Ryy \/— Ele Ryy Po

where E y; = $7p.Rig-
Assuming that E, = 0 for R = Ry; and R = Ry, the non-dimensional energy
“dissipated between Ry, and Ry, can be determined from (1), (2), (3), and (7) as

(5) F=

(8) AEzdl = AEzpl - AEzil =1- “i — 'y—l]: P:l[a;s("_l) — 1] .

For infensively oscillating bubbles the term AE,;; is small in comparison with 4E,,;
and therefore can be neglected. We obtain a simple relation

9) AE, =1 —d3,

often used in the literature [7—9]. For linear and weakly non-linear oscillations,
on the other hand, the terms 4E,,; and AE,;; are comparable and hence the use
of eq. (8) may lead to erroneous results. It may be then better to determine the
dissipated energy by some other method, e.g. from the effective pulse width.

Combining egs. (4) to (6) and putting t; = t,, t, = ,, we can express the non-
dimensional acoustic energy in terms of p,, and 9, as
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, 3
{10) v AEzal = C—*- gzlpzzpl .

e}

The non-dimensional quantities occurring in (10) are defined in the following way

[1, 4]:

@
11 Co = Co |2,
(11) o
3
(12) 9y =—"—,
Ry \/gf-
"N P
Pmi r Pp1 T
(13) P = (2 1) = B
v ’ P Rvi  Pw Ry
and the non-dimensional form of eq. (6) is
1 T2
(14) 8, =— J prdr, .
zp tz1
Let us now define the coefficient of acoustic radiation efficiency
(15) o= A5,

and the coefficient of acoustic losses during propagation of the wave from the bubble
wall to a point r

(16)

_ AE,
AE,

In a real environment, evidently, 0 < %, u < 1. In this work, however, we shall
assume that x, y = 1. Then 4E; = 4E, = AE; and we obtain from eq. (10)

(17) g ==

Hence 9, can be computed in two ways. For moderate intensities of the buble oscilla-

tions eq. (14) gives good results. This is also the only method that can be used for

evaluation of experimental data and in the theory of non-scaling bubbles. On the

other hand, for violent bubble oscillations, egs. (9) and (17) are usually more economi-

ca] with respect to the machine time and one does not need to know the form of p,

in this case. '
Finally, the peak pressure, p,,, can be determined from a relation [1]

(18) Popp1 = (Pltll - 1) Zm1 = (P:1Zn_11?y - 1) Zm1 .

Let us note that relations (17) and (18) are valid only in the framework of linear
acoustics.
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K. Vokurka: A method for evaluationg. ..

In experiments the damping factor, oy, is often appfoximated by the ratio of the
times of two successive oscillations. Let us determine the error introduced by this
approximation. Denoting

T,

19 = o2
( ) ﬁl T01:

and using the definition formula for T,, (T, = 2T, T, is the time of the bubble
oscillation)

(20) To—— 2,

Ry [%=
P

we may evaluate the ratio To/T,,,. We find that

Too1 Ty Ryz 04

T TooRyi Bi

As it always holds that A, > A,, it follows then that T, > T, and T,,; > T,
(cf. fig. 4) and we thus obtain from the above equation an important inequality

By > ay.
However, computations show that the actual difference between o and f is small
for all amplitudes of interest (typically o/ = 0-98—0-99).

3. BUBBLE MODEL

All computations presented in this paper have been done with Gilmore’s model
of a scaling bubble. In this model the equation of motion has the form [4]

0 m{i-8)eaw (-3 -w(ee ) Ea(i-d)

where C is the velocity of sound in the liquid at the bubble wall

(n—1)/2n
(22) c=cw<P+B> ,
Po + B

H is the enthalpy difference between the liquid at pressures P and p,,

(23) HeL " (5, +B) [(P ks B><"_1)/"— 1],

ol —1 P + B

and B and n are constants in the Tait equation of state for the liquid. The dots
denote differentiation with respect to time. The initial conditions of eq. (21) are
R(0) = Ry, and R(0) = 0. Finally, the pressure at the bubble wall, P, is assumed
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to vary as

(24) | P= pm1<—5—>_3ﬂ

RMl

After normalization of these equations we obtain

(25) Zz I—E + 372 1—1£ = H* 1.|._Z. +£H* 1__Z_ ,
C* 3 C* c* C* C*

(26) Cc* = o* P*—_—f-Bj (n—1)/2n
“\1+B* ’
) CEe— s e[ (BB,
n—1 1+ B*
(28) Pt = p¥ 7%,

with the initial conditions Z:0) = 1 and Z(0) = 0. Here B* = B/p,,.

The intensity of the bubble oscillations will be described by a non-linear amplitude
Ay = Ry/R., where R, is the equilibrium radius [1, 6]. Then the minimum pressure,
P, can be expressed as [1]

(29) Py, = A7%.

With the exception of an example given in section 5 the computations have been
done for the following values of the physical constants (water under ordinary labora-
tory conditions):

P = 100kPa, o, = 103kgm™3, ¢, = 1450ms™ !,
B=300MPa, n=7.

4. SCALING AND INDEPENDENT FUNCTIONS

The method to be discusseéd is based on a comparison of measured and computed
values of selected quantities. These selected quantities are the minimum bubble
radius, Z,, the time of bubble compression, T, the peak pulse pressure, p,,, the
effective width of the bubble pulse, 9,, the dissipated energy, 4E_4, the damping
factor, «, and the maximum wall velocity, Z,.,,. The functional dependences of these
quantities on the amplitude, 4, and adiabatic exponent, y, were denoted as the
scaling functions (Z,, T,,, P.p» 9., and 4E,,) and the independent functions (o, and
Zpw) [2]

For small amplitudes (4 < 2) the scaling and independent functions were computed
in [2]. In this section we shall present results of computations of these functions
for amplitudes as large as A < 4 (the scaling functions) and 4 < 10 (the damping
factor). In fact, all the computations were performed for the amplitudes 4 < 10,

Czechi. J. Phys. B 36 [1986] 605
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but after examination of the available experimental data it was decided to display
the scaling functions just for the limited range of amplitudes mentioned.

The scaling functions Z,, = Z,(4,7) and T,. = T.(A4,v) have been determined
by direct integration of eq. (25) and are displayed in figs. 3 and 4. In the case of the
violently oscillating bubbles experimental measurements of Z, encounter great
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Fig. 3. Scaling function Z (4, ). Fig. 4. Scaling function T,.(4, 7).
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Fig. 5. Scaling function p,,(4, 7). Fig. 6. Scaling function 8,(4, ).

difficulties (see, e.g. [7, 107); however, it is of great interest because it serves as
a basis for the determination of many other related quantities. The quantity T.
is of great practical importance because it can be easily measured. It also enables
one to determine the bubble size, Ry, just from the measurement in the time domain.
As can be seen in fig. 4, the function T,(4, y) approaches the asymptotic value of
0915 very quickly. For example, for 4 = 3 the deviation of T,, from the value
0-915 represents just a few per cent (<2-7%). ’

The scaling functions p,, = P.,(4,7) and 3, = 9,(A, y) are displayed in figs. 5
and 6. The function p,, was determined from eq. (18) and the function 9, both from
eq. (14) (small 4) and egs. (9), (17) (large A). As noted in section 2, egs. (17) and (18)
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assume acoustic propagation of the pressure waves and therefore can be used only
for moderate amplitudes of the bubble oscillations. However, no attempt was under-
taken here to determine the amplitudes, A, for which the finite-amplitude effects
in radiated waves become important.

The scaling function 4E,q = AE,,(4, ) is given in fig. 7. As in the case of 9,
the function 4E,, was calculated both from eq. (10) (small 4) and eq. (9) (large 4).

1.0 T T 10 T T
DE4 a
0751 =it 075k -
1.25 y=14

1.33 1.33

o5+ 14 i 05 1.25 b
115
025 T 025+

0 1 1 0 ] 1
1 2 3 A 4 1 4 7 A 10
Fig. 7. Scaling function 4E_4(4, ). Fig. 8. Independent function a(4, y).

Fig. 9. Independent function Z,,,(4, »).

The calculated independent functions « = a(A4,y) and Z., = Z,.(4,7) are
displayed in figs. 8 and 9. The functions « and Z,,, were determined by direct integra-
tion of eq. (25). The quantity o is very useful for the evaluation of experiments,
because apart from the bubble size, Ry, it often represents the only available informa-
tion given in the literature. Though « was displayed for values of A as great as 10,
it should be noted here that the area of the bubble model validity is limited to moder-
ate amplitudes [4, 11]. Hence, the results obtained for larger 4 should be considered
as a first approximation only. The quantity Z,, was included because it is occasion-
ally measured in experiments by photographic methods. It can also be used to check
the model validity [11].
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From the definition of the damping factor, «,, it follows that
(30) AZ = °‘I1A1 .

Hence, there is no sense in integrating eq. (25) behind R,,,, because once the scaling
and independent functions are determined for the first bubble oscillation and the
first bubble pulse, we have sufficient information at our disposal to determine the
bubble behaviour at any further time. For example, for given 4, we can determine
from fig. 8 the corresponding value of «, and then from eq. (30) the value of A,.
By repeating this procedure we can find the amplitude for any further bubble oscilla-
tion. And when the amplitude is known, the corresponding scaling and independent
quantities can always be determined from figs. 3 to 9.

What has just been said does not, of course, apply for models which take the
previous bubble history into account, such as the models considering the effect
of gravity, gas diffusion, etc. In these models, for any new oscillation new results
will be obtained. But let us note here that such models are only rarely used at present.

5. EXAMPLES OF APPLICATIONS

As said above the method for evaluating the unknown bubble parameters is
based on the comparison of the measured data with scaling and independent functions
computed with the aid of a suitable theoretical model. In a general case the functions
Zs Toer Dops 82 4E 4, 0, and 7. are general surfaces above the Ry — A plane
(the bubble map). However, as the scaling law asserts [5], for scaling bubbles the
analysis is substantially simplified. The simplification consists in the fact that the
quantities mentioned are either independent of the bubble size (the independent
quantities) or they are in the dimensional form linear functions of the bubble size
(the scaling quantities). The quantity 4E, is an exception because it grows as Rj;.

A freely oscillating bubble is described by its size, Ry, and amplitude of oscillations,
A. Whereas the direct measurement of Ry, usually represents no serious problem,
the situation is different as far as 4 is concerned. The reason is that with the ex-
ception of linear oscillations and excitation in the equilibrium system there is no
direct method available to measure 4. Hence, indirect methods, such as the method
of the scaling and independent functions, must be used.

In theory, to determine these two parameters we need to measure two quantities,
e.g. T, and p,,. In practice, however, because x, u + 1, we shall encounter serious
discrepancies when comparing the measured data with a theoretical model. Then,
a measurement of as many quantities as possible is necessary to obtain a more
complete picture.

As far as the time domain measurements are concerned, there is quite good agree-
ment between -the theory and experiment. For example, Rayleigh’s time for the
bubble collapse, T,, = 0-915, agrees well with the measured data (see, e.g. fig. 11
in [10]). The same is true for Minnaeret’s frequency of the free linear oscillations
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Wy = Tf(37)"/? [12]. Encouraging experimental results have also been reported
recently on measurement of the polytropic exponent by Crum [13] However, as
we shall see later, the situation is completely different as far as the energies are
concerned.

The task of assessing the validity of the bubble models and determining the
amplitude, A, is also complicated at present by the fact that up to now only few
experimental works, in which a sufficient number of quantities were measured
simultaneously, have been published, and that often the experiments are performed
with the non-scaling bubbles.

In fact, we know only one experimental work [8, 9], where relatively extensive
data were collected. In this work it was found that (in the following, G is the weight
of the explosive used and h the depth of explosions)

(31) Ryy = 12:6GY3[1Y3 ,  [ft, 1b, ft]
= 3-36G'3[h®, [m, kg, m]
(32) Ryz = 85GY3[m)?,  [ft, 1b, ft]
= 2:27G'3|h;®, [m, kg, m]
(33) T,, = 436GY3[n)%, [s, 1b, ft]
’ = 2116Y3nY°, [s, kg, m]
(34) T,, = 3-06G'3[n}®, [s, 1b, ft]
= 148G'3[n)®, [s, kg, m]
where
(35) h,=h+ 33, [ft]

=k + 10:06. [m]

Further it was determined that

(36) pp1 = 1200, [1bin~?]
— 827 x 10, [Pa]

(37) P2 = 250, [1b in~%]
=173 x10°,  [Pa]

(38) Fy = 139G13, [in 1b in~2, 1b]
= 317 x 103G*?, [kgs™2 kg]

(39) F, = 168G, [in 1b in~2, 1b]

= 383 x 10°G*?, [kgs™2 kg]

where the quantities p,y, P2, F1, and F, were measured at the distance from the
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charge centre equal to
(40) r = 284G'3, [ft, 1b]
= 1-13G*3. [m, kg]

Finally, it was found that

y =125,
o, = 068,
By =070,
B, = 0:82.

The measurements were done at a depth & = 500 ft (152-4 m), so that p,, = 1:62 MPa.

After substituting & = 152-4 m into egs. (31) to (34) and replacing in the remaining
expressions G'/3 with Ry and Ry, (using eqgs. (31) and (32), respectively) we may
substitute egs. (33), (34), and (36) to (40) into formulae (4), (13), (17), and (20).
The values of the non-dimensional quantities thus obtained are given in table L
As the ambient pressure, p,,, in this example substantially differs from the “ordinary”
value p, = 100 kPa, the graphs determined in the preceding section unfortunately
cannot be used now. New functions computed specially for p, = 1-62 MPa and
y = 1-25 are displayed in figs. 10 to 12. The values of the amplitudes 4, and A4,
determined from these graphs are given in the second column of table I. For com-
parison results found from the scaling functions computed with Rayleigh’s model 2]
are given in the third column of table I.

The puzzling feature occurring in table I is an enormous scatter in values 4,
and A, (especially in connection with the damping factors «; and ®,). The reason

Table I

To the example: The values of experimentally determined non-dimensional quantities associated

with the first and second bubble oscillation and the first and second bubble pulse (first column)

and the corresponding theoretical amplitudes determined from figs. 10 to 12 (second column)
and from figs. II-8 to II-10 in [2] (third column).

T,y = 0995 Ay = 2:02 Ay =20
Papy =95 A, = 205 A, =185
8,y =017 A, =21 A; =198
AE,,, = 032 A4, =19

ay = 068 A, =27

T,., = 1013 Ay = 1:92 A, = 1-88
Pz = 291 A, = 159 Ay =15
8,, = 0685 4, = 167 Ay = 1:62
AE,, = 012 A, = 145

@, ==0986,=080 A4, =22
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for this scatter is, apparently, some dissipative mechanism not accounted for in the
theoretical model. Indeed, whereas the first bubble pulse carries away approximately
32% of E,y,, the energy dissipated between Ry, and Ry, accounts for 4E,q; =
=1 — o} = 68% of Eyy;. Similarly, the second bubble pulse carries away 129,
of E,y, but the dissipated energy accounts for AE,q, =1 — (0-988,)° = 49%.

10 T , , 175
Zm Tre
0751 415
\!
\
05 N\ 1125
N -
025 S~ Ao
0 ] 1 1 o7 o}
4 15 2 25 A 3 J 1 15 2 25 A 3
Fig. 10. To the example: Scaling functions Z;;  Fig. 11. To the example: Scaling functions Pzp
( ) and T,, (— — —) for the ambient ( ) and &, (— — —) for the ambient
pressure p,, = 162 MPa and y = 1-25. pressure p,, = 1:62 MPa and y = 1:25.
10 T T T 10
¢ Dbzq
o9r Aoz
-~
JP— 7
08+ /s
, ~105
o7l s
Fig. 12. To the example: Scaling and idependent J — ,
functions o ( )y and 4E,y (— — — —) o6} // a2y
for the ambient pressure p, = 162 MPa and e
=1 ! L 1 I1]
y= 125 BT 2 25, s

These facts have been known more than 40 years [7—9], but, strangely enough,
they do not seem to worry many workers in the field of bubble dynamics.

In closing let us verify whether the bubbles generated in-the considered example
were the scaling bubbles. The charge weights used in the experiments ranged from
0-505 to 12-01 1b (0-23 to 545 kg) so that the bubble sizes, R,;, ranged from 0-38 to
1-:08 m. In [3, 5] the limiting bubble size for amplitude 4 = 2 and the ambient
pressure p,, = 100 kPa was found to be Ry = 0-1 m. Then from the principle of
similarity [5] it follows that for the ambient pressure increased by a factor 162,
the limiting bubble size is also increased by the same factor and hence of Ry = 1-6 m,
which is well above the bubble sizes used. This is certainly no new result as the validity
of the scaling law was verified experimentally first of all [8, 9] but for us it represents
an important check of the theory [3, 5].
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As a second example let us briefly evaluate data published by Mellen [14]. Mellen
worked with spark generated bubbles and measured the time of the first oscillation,
T,1, and the peak pressure in the first bubble pulse, p,,, at a distance r = 1 m (the
actual measurements were done at » = 0-5 m, but the published data were converted
for r = 1 m). As the spark bubbles oscillate very violently, the time of the first
bubble compression can be assumed to be equal to T,,, = 0-915 (cf. fig. 4). Then
assuming that T,, = 2T,, we obtain from (20) for ordinary laboratory conditions
a relation Ry = 01/0-183, which enables one to determine the bubble size just
from a time domain measurement.

The measured peak pressures, p,;, vs bubble sizes, Ry, were reproduced in [5],
where it was also shown that in the range of the scaling bubbles the variation of p,;
with Ry, can be approximated by a straight line in the form p,; = C;Ryy, where
C, = 1-67 x 107 Pam™?. Substituting this equation into the definition formula (13)
we find that for p, = 100 kPa and » = 1 m the non-dimensional peak pressure is
Dzp1 = 167.

Let us now compare the two examples discussed. The bubbles generated by under-
water explosions are typical gas bubbles which oscillate with moderate amplitudes
(e.g. the value of Dzp1 = 95 gives A = 2-05). On the other hand, the spark generated
bubbles are vapour bubbles oscillating very violently, the pressure p,,; being 176
times larger than in the previous case. Though vapour bubbles differ substantially
from the gas bubbles, to a first approximation they can be modelled by gas bubbles
having sufficiently large amplitudes of oscillations [2]. Then using the scaling
function p,, (fig. 5) we find that for p,,; = 167 and y = 1-33 the corresponding
amplitude is A; = 3-5, and for p,,; = 167 and y = 1:25 the amplitude is 4; = 3-29.
These values are much larger than those found in the case of the explosion generated
bubbles.

It may also be interesting to estimate the value of the maximum pressure, Py,
in the two examples. Let us assume that the actual amplitude, 4,, is determined by
the value of the peak pressure, p,,;. In the case of the underwater explosions we have
found that for p,,; = 9-5 and y = 1-25 the amplitude is 4; = 2:05. Then from
fig. 10 it follows that Z,, = 0-16 and hence Py, = (4,Z,,)" % = 65:4. As the
ambient pressureis p,, = 1-62 MPa, we finally obtain the result that Py; = 106 MPa.

In the case of the spark bubbles we have determined that p,,; = 167 and hence
for y = 1-33 we have 4; = 3-5. Then Z,; = 0-034 and Py, = 2871. As p,, = 100
kPa in this case, we finally have that Py = 287-1 MPa. Note the interesting result
that although p,,; in the two examples differs by a factor of 17-6, the maximum press-
ure Py, differs only by a factor of 2:76. This result is to be attributed, evidently, to
the difference in the ambient pressures, p,,.
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6. BUBBLE PULSE SPECTRUM

Knowledge of the bubble pulse spectrum is useful, for example, in determining
the optimum bandwidth of the measuring experimental apparatus. In this section
we shall give two approximate formulae that can be conveniently used for this
purpose. The formulae are based on the scaling functions T, and 9,.

In the case of the underwater explosions the bubble pulse spectrum was studied
both experimentally and theoretically by Weston [15]. It was found that the spectrum
is approximately flat between frequencies f; and f,. Below and above these frequencies
the spectrum falls off at 6 dB/octave. A similar situation can also be expected in the
case of other excitation techniques. Thus the required bandwidth of the measuring
apparatus (hydrophones, amplifiers, etc.) should extend at least from f; to f,, and
if possible, should be broader.

The frequencies f, and f, can be determined from the following approximate
formulae:

1 1
(41) fi=—= ,
l To1 2RM1Tzcl(QOO/poo)1/2
1 1
(42) Ju

- 2rn3, - 275R.\11'9z1(9w/pw)1/2 .

For water under ordinary laboratory conditions it holds that (g,,/p.)'* = O-1
and the values of T, .; and 3,, can be determined from figs. 4 and 6.

As a concrete example let us consider two bubbles oscillating with an amplitude
A, = 3-5 and having sizes Ry;; = 1 mm in the first case and Ry; = 10 mm in the
second case. Assuming y = 1-:33 we can find out from figs. 4 and 6 that T, = 092
and 9,y = 1073, respectively. Then for Ry; = 1 mm we obtain from eq. (41) that
fi=55kHz and from eq. (42) that f, = 1-6 MHz. Similarly, for Ry, = 10 mm -
we have f; = 550 Hz and f, = 160 kHz. Hence, whereas in the case of the larger
bubble suitable commercial hydrophones are available, in the case of the small
bubble we need a hydrophone of a special design, which may often be a problem.

As a second example let us examine how the required bandwidth varies with the
amplitude of the bubble oscillations. Let us now consider three bubbles of equal
size Ry;; = 10 mm and having the same adiabatic exponent y = 1-33. Let the first
bubble oscillate linearly with the amplitude 4; = 1-01, the second with the amplitude
A, = 2 (the gas bubble) and finally the third bubble with the amplitude 4; = 3-5
(the vapour bubble). The corresponding bandwidths are: f; = f, = 318 Hz in the
first case; f; = 500 Hz and f, = 5-3 kHz in the second case; and finally f; = 550 Hz
and f, = 160 kHz in the third case.
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7. CONCLUSION

The method of the scaling and independent functions makes it possible to confront
the theoretical model with experimental data. When evaluating the data obtained
in experiments with explosion generated bubbles, a serious discrepancy between the
theory and experiment was revealed. Unfortunately, as no similar experimental data
are available for other bubbles, it cannot be verified at present, whether this dis-
‘crepancy is a particular feature of the explosions or a general one valid for all bubbles.
Especially puzzling is the finding that the unaccounted energy loss (i.e. 4E;, — 4E;)
is very large even in the case of the second bubble pulse, when the amplitude of the
bubble oscillation is relatively small.

The computed scaling and independent functions can be applied directly to scaling
gas bubbles. Some caution, however, is necessary, when interpreting data originating
from vapour or non-scaling gas bubbles.

It seems that to solve the bubble dynamics mystery, a combined use of as many
measuring methods as possible will be necessary. For example, high-speed cinemato-
graphy alone, though very important in monitoring the bubble size, shape, and
translational motion, can provide only a limited amount of information. This in-
formation concerns, for example, the maximum bubble radii in the successive bubble
oscillations. From these data the damping factor can easily be determined. But,
as shown in section 5, this is not sufficient for assessing the bubble oscillation intensity
eorrectly, because the use of the damping factor alone leads to exaggerated amplitude
cstimates.

Hence, further methods, including non-traditional ones, are highly desirable.
In this respect, recent progress in the high-speed holocinematography [16—18]
represents a step forward and should enable us to gain a better understanding of the
complicated phenomena associated with the violent bubble oscillations.

8. CORRECTIONS

The author would like to correct a few statements given in the previous papers
[1, 3]. First, the earliest derivation of eq. (I-12) is due to Besant [19] and not to
Rayleigh [20] as stated in the introduction to the paper [1]. Though Rayleigh
himself mentiones Besant’s result, this was until recently not easily accessible. It is
Hammitt’s merit that Besant’s original analysis was reprinted [21] and thus made
available. ‘

Second, an exact solution of eq. (I-12) has been obtained for the particular case
of y = 4/3 by Childs [22] in terms of elliptic integrals.

Third, energy .dissipation due to viscosity (integral (III-23)) was given first by
Taylor [23] and this was nine years before Poritsky [24] to whom the analysis of the
viscosity effects is nowadays generally ascribed.
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Finally, in evaluating integral (I-23) only the first two terms from the right-hand
side of eq. (I-21), i.e. the acoustic field, should be used. This may be not so obvious
from the notation used in [1].

Received 7. 5. 1985.
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