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Methods for excitation of gas bubbles into free oscillations are classified and discussed. 
The analysis is based on Rayleigh’s model of a medium-sized bubble. A non-linear 
amplitude is selected to be a universal measure of bubble oscillation intensity and its 
relation to natural intensity measures is determined. 

1. INTRODUCTION 

In the majority of theoretical works on the non-linear free oscillations of gas bubbles the 
wall motion is supposed to start at the maximum radius (see, e.g., references [l-6]). This 
approach is probably due to Rayleigh’s original formulation of the problem [7]. Another 
reason for this is that the most important phenomena associated with intensive bubble 
oscillations occur during the final stages of compression and early stages of expansion 
and hence earlier phases are omitted from the analysis. As far as the bubble wall motion 
is concerned the respective initial conditions are well known (R = R, d = 0) and hence 
no difficulties arise. However, this need not be true for some other variables, as, for 
example, the gas temperature, the value of which depends on previous bubble history. 
Some authors (see, e.g., references [l, 5,6]) have defined the initial gas temperature to 
be equal to the temperature of the surrounding liquid. However, as will. be shown here, 
such an approach may be justified only in a rather special case, when the bubble is excited 
by decreasing its energy. 

To determine the initial temperatures in other cases, it is necessary to consider the way 
the bubble oscillation was excited. Strangely enough, little attention has been paid to this 
question in the literature on bubbles. 

The aim of this paper is to classify and examine different excitation techniques. To 
gain a better insight into the processes involved, a bubble model as simple as possible 
will be used here. This simplest model is Rayleigh’s model of a medium-sized spherical 
gas bubble [8], for which the effects of gravity, surface tension, viscosity, and heat 
conduction can be neglected, and a non-compressible liquid is assumed. Further, to 
simplify the analysis substantially, it is assumed that changes of the ambient pressure are 
in the form of step or rectangular pulses. 

All numerical solutions presented here have been obtained with the standard Runge- 
Kutta method. 

2. EXCITATION TECHNIQUES 

There are three basic ways of exciting bubbles for free oscillations. These are (1) by 
decreasing bubble energy, (2) by increasing bubble energy, and (3) by transient change 
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of the ambient pressure. Though corresponding equations of the bubble wall motion are 
known, they will be briefly derived here for the sake of completeness and clarity. 

2.1. EXCITATION BY DECREASING BUBBLE ENERGY 

Consider a gas bubble of radius R M and let the bubble be initially at rest. At the 
moment t = 0 the pressure of the gas in the bubble interior is instantaneously decreased 
to a value P, <pa, where pm is the pressure in the liquid at infinity. Due to the excess 
pressure, pa0 -P,, the bubble will first contract to a minimum radius R, and then oscillate 
between R, and R, During the contraction the gas pressure, P, is supposed to increase 
according to the adiabatic law P = P,,,( RM/ R)3y. Here y is the ratio of the specific heats. 
The work done on the gas during the compression from RM to R is 

AE~=~~[~/(Y-~)]P~R~[(R~/R)~‘~-“-~]. 

The liquid, which was initially at rest, acquires a kinetic energy Ek = 2rpRzR3, where p 
is the liquid density. The initial potential energy of the bubble was EPM = (4/3)?rp,R’,. 
During the contraction from R, to R the decrease of the potential energy equals 

AE, = EPM -E,=$mp,(R3,-R3). 

Finally, the bubble compression is governed by the energy relation AE,, = Ek + AEi. 
At this point it is convenient to introduce the following non-dimensional quantities: 

time t, = t/[RM(p/pm)““], radius 2 = R/R,,,, minimum gas pressure P*, = P,,,/pm, and 
energy E, = El EpM As these variables are introduced in connection with bubble com- 
pression they will be called the compression variables and the resulting system of equations 
the compression or 2 system. The non-dimensional form of the relations given above is 

AEzi=[l/(y-1)]P*,[Z-3’Y-“-1], (1) 

Erk = $Z2Z3, AEzp = l- Z3, AEzp = Ezk + AE,i. (2-4) 

By substituting equations (l)-(3) into equation (4) and differentiating the resulting 
equation with respect to time one obtains 

ZZ+;Z’= pzz-37-l. (5) 

The initial conditions for this equation are Z(0) = Z, = 1 and Z(0) = 0. An example of 
the solution of equation (5) is given in Figure 1. 
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Figure 1. Excitation of a bubble by decreasing its energy: time history of the wall motion in the compression 
system. P$ = 0.1, y =4/3. Tin T,,, T,,-times of bubble compression, expansion, and oscillation. ZM, Z, 
Z,,,-maximum, equilibrium, and minimum bubble radii. 
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In theory, the initial pressure reduction in the bubble interior can be achieved by an 
extremely fast evacuation of a portion of the gas from the bubble or by a violent cooling 
of the gas. However, as far as the author is aware, none of these techniques has been 
used experimentally. Another method is based on an instantaneous increase of the ambient 
pressure from pm to pk. In this case P*, = pm/&. However, for the same bubble size and 
liquid density as in the previous case, the actual period of oscillations, T, will decrease 
by a factor (pJp&)“‘. The pressure jump from pm to pd is also displayed in Figure 1. 
The last method, which has occasionally been used in experiments [9-121, involves an 
auxiliary vessel (e.g., a thin wall sphere), which can be partially evacuated. The vessel is 
then destroyed in the liquid, and thus an implosion is triggered. However, because of the 
vessel remnants the implosion can suffer some rather unpredictable disturbances. 

2.2. EXCITATION BY INCREASING BUBBLE ENERGY 

Let a gas bubble of radius R, be initially at rest. At the moment t = 0 the pressure 
inside the bubble is instantaneously increased to a value PM > pm. This increase in the 
gas pressure will result in the bubble’s expansion. During this expansion the gas pressure 
is supposed to decrease according to the adiabatic law P = PM( R,/R)3Y. When the wall 
moves from R, to R the work done by the gas equals 

AE~=$r[l/(y-1)]PMR3,[1-(R,/R)3’Y-’)]. 

At the same time the potential energy of the bubble increases from Epm = (4/3)7rpmR3, 
to Ep so that 

AE; = EP - EPm = $rp,( R3 - R3,). 

The relation for the kinetic energy of the liquid was given above. Finally, the respective 
energy equation for the bubble expansion is AE: = Ek + AE;. 

Introducing the non-dimensional expansion variables 

t, = MLb/~m)“‘1, W= R/R,, P*M = PMlPaI, Ew=EIE,m 

one obtains the following expansion (or W) system of equations: 

AE;i=[l/(y-l)]P*,[l- W-3(Y-‘)], (6) 

Ewk=$w2W3, AE&,= W3-1, AE’,, = Ewk +AE’,,. (7-9) 

Substitution of equations (6)-(8) into equation (9) and differentiation with respect to 
time gives 

$W+IW’= P” w-37 _ 1 
2 M (10) 

where the initial conditions are W(0) = W,,, = 1 and W(0) = 0. An example of the solution 
of equation (10) is given in Figure 2. 

Excitation by increasing bubble energy may be achieved in several ways. One possible 
method is based on injecting a compressed gas into the liquid. Such a technique was 
used, for example, in the work described in references [13-151. (Heuckroth and Glass 
[14] used thin wall glass spheres containing pressurized gas. This technique is just the 
opposite to the evacuated thin wall glass spheres mentioned in the preceding section.) 
Another method is based on a violent heating of the gas in the bubble interior, which 
thus increases the gas pressure. Such an excitation occurs, for example, in the case of 
underwater explosions, where the exothermic reaction in an explosive produces gases 
having high pressure and temperature [16]. A third possible method is based on an 
instantaneous lowering of the pressure in the liquid from po3 to pk. In this case PL = p,/pQ; 
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Figure 2. Excitation by increasing bubble energy: time history of the wall motion in the expansion system. 
P*M = 100, y = 4/3. T,,, T,, TWO-times of bubble expansion, compression, and oscillation. W,, We, W,,,- 
maximum, equilibrium, and minimum bubble radii. 

however, the period of oscillations, To, will be increased by a factor (poo/p&)“2. The 
pressure jump from pm to pk is also displayed in Figure 2. 

2.3. EXCITATION BY A TRANSIENT CHANGE OF THE AMBIENT PRESSURE 

Let a bubble of radius R, be initially at rest. At the moment t = 0 the pressure in the 
liquid at infinity is instantaneously changed to a new value p& = pm + Ap, kept at this 
value for a time AT, and then returned to the original value pm. The pressure jump Ap 
may have a positive or negative sign and the time interval AT may have a value 0 < AT < 00. 

If Ap > 0, the bubble will contract first and the internal energy will vary as 

AEi=$r[l/(y-l)]p,R3,[(R,/R)3(y-“-1]. 

For t < 0 the potential energy of the bubble was EPe = (4/3)7rpmR3,, and at t = 0 it increases 
to J%.M = (4/3) 7r(pm + Ap) Rz; hence the change in the potential energy during the bubble 
contraction is 

AE, = EPM - EP = $(p,+ Ap)( R3, - R3). 

The kinetic energy and the energy relation are the same as those given in section 2.1. 
Introducing non-dimensional equilibrium variables 

ty = ~/[Reb/~~)“‘1, Y= R/R,, AP* = APIP~, Ey = E/J%, (11) 

one obtains the equilibrium (or Y) systems of equations 

A&i 

Eyk=$ 

= [ll(Y 

v2 Y3, 

-1)X 

A& = (1 + Ap*)( 1 - Y3), 
y--3Cv-1) _ 13, A Eyp = Eyk + A Eyi. 

(12-14) 

By the usual procedure one derives the equation 

?Y+;Y2= Y-3y-(1+Ap*), (15) 

with the initial conditions Y(0) = Y, = 1, Y(0) = 0. 
If Ap < 0 the bubble will expand first. With the same non-dimensional Y variables as 

above it is easy to see that now AE$ = -AEy, AEL, = -AEyP and finally AE$ = I& + AE&. 
By the usual procedure one derives equation (15) again. 
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There are basically two ways of changing the ambient pressure temporarily. First, the 
bubble is stationary and a pressure disturbance (a wave of compression, rarefaction, or 
a tension wave) travels through the liquid. Second, a liquid containing the bubble flows 
through a region where the pressure is either increased or decreased. 

According to the value of AT, (AT, = AT/[R,(p/p,)“2]), two situations can be recogn- 
ized: (1) the interval AT, is longer than the bubble life, which will be symbolically denoted 
as AT, + 00, and (2) the length of the interval AT, does not exceed the length of the 
bubble life, which will be denoted as AT, <co. According to the value of Ap* three 
situations can be distinguished: (a) increased pressure, i.e., Ap* > 0, (b) decreased press- 
ure, i.e., -1 < Ap* < 0, and (c) tension, i.e., Ap* d - 1. All possible combinations of AT,, 
and dp* can be considered briefly, as follows. 

(la) AT,, -+ co, Ap*> 0. In this case equation (15) can be rearranged to the form of 
equation (5) by replacing variables Y with Z and P*, with (1 + Ap*)-‘. The period of 
bubble oscillations, To, is decreased by a factor (1 + AP*)-“~. This technique was used, 
for example, by Smulders and van Leeuwen [ 171, who worked with relatively long pressure 
pulses. 

(lb) A7Q+q -1~ Ap” < 0. Now equation (15) can be rearranged into the form of 
equation (10) by replacing variables Y with W and P*, with (1 + Ap*)-‘. The period of 
bubble oscillations, To, is increased by a factor (1-C Ap*)-I”, 

(1~) AT,,+co, Ap* s - 1. Under these conditions equation (1.5) gives an unlimited 
growth; i.e., as t_” + CO, then Y + co. 

(2a) 47; < 00, Ap* > 0. For 0~ ty G AT, the bubble behaves as in (la) and one says 
that the bubble is driven during the interval AT,. For ty > A?;. the bubble performs 
oscillations in the equilibrium system and one can say that the bubble is released. An 
example of the computed bubble wall time history is given in Figure 3. Excitation by 
short pressure pulses was used in the work described in references [18-201. 

Time. tr 

Figure 3. Excitation by a transient increase of ambient pressure: time history of the wall motion in the 
equilibrium system. Ap* = 5, AT, = 1.33, y =4/3. Tyod, T,,,-times of oscillation in the driving phase, and 
when the bubble is released. YM, Y,, Y,,,-maximum, eqmhbrium, and minimum bubble radii when the bubble 
is released. 

(2b) AT’ < co, -1~ Ap* < 0. For 0 c $6 A Ty the bubble is driven and behaves as in 
(lb); for ty > AT, the bubble is released and performs oscillations in the equilibrium 
system. An example of the computed bubble wall time history is given in Figure 4. 

(2~) AT, < a~, Ap* s - 1. For 0 < f,, G AT, the bubble is driven and continuously grows; 
for ty > AT, the bubble is released and oscillates in the equilibrium system. An example 
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Figure 4. Excitation by a transient decrease of ambient pressure: time history of the wall motion in the 

equilibrium system. Ap* = -0.75, AT, = 11, y =4/3. Tyod, T,,,-times of oscillation in the driving phase, and 
when the bubble is released. YM, Y,, Y,,,-maximum, equilibrium, and minimum radii when the bubble is 
released. 
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Figure 5. Excitation by a transient tension pressure: time history of the bubble wall motion in the equilibrium 
system. Ap* = 1, AT,,=2, y=4/3. T,,,-time of bubble growth. T,,,- time of oscillation when the bubble is 
released. Y,, Y,, Y,-maximum, equilibrium, and minimum radu when the bubble is released. 

of the computed bubble wall time history is given in Figure 5. This kind of excitation 
may occur when a tension wave (e.g., a shock wave reflected at a free surface) travels 
through the liquid containing gas bubbles. 

3. AMPLITUDE OF BUBBLE OSCILLATIONS 

The intensity with which the bubble oscillates is determined by the values of the 
parameters P*,, PL, or Ap* and AT, occurring in the equations of motion (5), (10) and 
(15), respectively. Another possibility for determining the intensity of oscillations is to 
make use of the initial conditions. This is used, for example, in the case of linear bubble 
oscillations [8]. 

To be able to compare different excitation techniques, a non-linear amplitude, A (here 
referred to simply as the “amplitude”), defined as 

A = R,/ R, (16) 
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will be used. Here RM and R, are the maximum and equilibrium radii, respectively. The 
same measure of oscillation intensity was used, for example, by Lauterborn [21] and 
Flynn [22]. One can find the mutual relations between the non-linear amplitude A and 
the natural intensity parameters in different excitation systems, as follows. 

3.1. COMPRESSION SYSTEM 

As follows from equation (5) the natural intensity measure in the compression system 
is the minimum pressure P*,. The relation between P*, and A has the form 

Here Z, = R,l RM. 

J,* = z3Y = A-3,‘. 
m e (17) 

Calculated variations of the amplitude A and of the compression time T,, with the 
pressures P*, and Ap* are given in Figure 6. 

Pressure chmqe, Ap* 

‘.‘\ 

IO-' 
Minimum presswe, Pm* 

Figure 6. Compression system of bubble excitation: variation of the amplitude of bubble oscillation, A, and 
of the compression time, T,, with the minimum gas pressure, P*_, or the ambient pressure change Ap*. y = 4/3. 

3.2. EXPANSION SYSTEM 

The natural measure of oscillation intensity in this system is PG. This maximum 
pressure is related to the amplitude A through the equation 

P$, = Wiy = ( WM/A)3y. (18) 

Here We = R,/ R, and W, = R,/ R,. For a given value of P% the maximum bubble 
radius W,,, can be determined by integrating equation (10). Computed variations of the 
amplitude, A, and of the expansion time, T,,,,, with the pressures PL and Ap* are given 
in Figure 7. 

Figures 6 and 7 show that in the case of linear oscillations (P*,+ 1, P& + 1) the 
compression and expansion times are equal to ~/2[8]. On the other hand, when the 
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Figure 7. Expansion system of bubble excitation: variation of the amplitude of bubble oscillation, A, and 
of the expansion time, T,,,,, with the maximum gas pressure, Pt, or the ambient pressure change Ap*. y = 4/3. 

minimum pressure P*, is decreased, the compression time quickly approaches the limiting 
value O-915 valid for an empty bubble [7]. 

3.3. EQUILIBRIUM SYSTEM 

As long as the bubble is driven the results of the preceding sections 3.1 and 3.2 can 
be used (with the exception of the case when Ap* s -1). One needs therefore to consider 
the behaviour of the bubble only after it has been released. Hence, only the case AT, < 00 
needs to be studied. 

For t,, > AT, the amplitude A directly equals the maximum radius YM. As there is no 
analytical relation among Ap*, AT, and A the mutual dependence of these quantities 
can be determined only by numerical integration of equation (15). Again, attention needs 
to be paid to the different ranges of Ap* separately. 

(2a) AT, < 00, Ap* > 0. Due to a periodicity in the bubble motion the dependence of 
A on AT, is also a periodic function. It is therefore sufficient to examine only an interval 
0 G A Ty s Tyod, where Tyod is a period of oscillations when the bubble is driven . For a 
particular pressure Ap*, the period Tyod can be determined from Figure 6. The calculated 
dependences of A on AT, for three different values of Ap* are displayed in Figure 8. 
Figure 8 shows that if the pressure change lasts exactly A Ty = (k + f) Tyod, k = 0, 1, 2, . . . , 
the bubble is excited to oscillate with a maximum amplitude. On the other hand, if the 
driving interval lasts exactly AT, = kTyod, k = 1, 2, . . . , the bubble, when released, ceases 
to oscillate completely. Thus excitation by this technique is very sensitive to the length 
of the interval AT, 

(2b) AT, < 00, -1 < Ap* < 0. In this case also the motion of the bubble during the driving 
phase is periodic and it is therefore sufficient to consider the dependence of A on AT, 
only for 0 s A Ty s Tyo+ Calculated graphs are shown for three values of Ap* in Figure 
9. Again, the bubble is excited to oscillate with a maximum amplitude, A, if AT,, = 
(k+$)T,,,, k=O, 1, 2 ,..., and it ceases to oscillate completely if AT, = k Tyod, k = 1, 
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Time interval, AT, 

Figure 8. Excitation of a bubble by transient increase of ambient pressure: variation of the amplitude of 
oscillation when the bubble is released, A, with the length of the interval AT, and the pressure change Ap*. 
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Time wderval , AT, 

Figure 9. Excitation of a bubble by transient decrease of ambient pressure: variation of the amplitude of 
oscillation when the bubble is released, A, with the length of the interval AT, and the pressure change Ap*. 
y = 4/3. 

2 . . . Therefore, excitation by this technique is also highly sensitive to the length of the 
i&erval AT, 

(2c)AT,,<oo, Ap*<--1. Now the bubble steadily grows during the driving phase. 
Therefore, both A and the growth time, Tyg, steadily increase with AT, (see Figures 10 
and 11). 
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Figure 10. Excitation of a bubble by transient tension pressure: variation of the amplitude, A, with the length 
of the interval AT, and the tension pressure Ap*, y = 4/3. 

0 1 

Ttme interval, A TV 

Figure 11. Excitation of a bubble by transient tension pressure: variation of the growth time, T, with the 
length of the interval AT, and the tension pressure Ap*. y = 413. 

4. DISCUSSION 

When comparing equations (l)-(5) with equations (6)-(10) it can be seen that the 2 
and W systems are mutually symmetric: i.e., under the transformations ZZZ W, m&M, 
and also in the case of the quantities denoted by the apostrophe +a--, the other system 
of equations will be obtained. Should the amplitude, A, defined by equation (16), be 
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denoted as A, and a quantity A, be defined as A, = R,/ R, then equations (17) and 
(18) also achieve a mutually symmetric structure. This symmetry is not only formal. For 
example, in Rayleigh’s model it is sufficient to solve the equation of motion in only one 
of the two systems. The respective quantities in the other system can then be determined 
by simple algebraic operations. A certain kind of symmetry also holds with respect to 
excitation by increased and decreased ambient pressure in the Y system. 

In the limit of small amplitudes (A+ l), the wall motion is also symmetric around the 
equilibrium radius R, and for a given linear amplitude A, = (R, - R,)/ R, = A - 1 then 
PL = 1 + 3 ‘yA, and P*, = 1 - 3 ?A, [8]. However, due to the inherent non-symmetry in the 
bubble wall motion (a divergence during the expansion phase and a convergence during 
the compression phase), when the amplitude of oscillations is increased the maximum 
pressure Pf, grows much faster and the minimum pressure P*, much more slowly than 
predicted by the formulae for the linear case (cf. also Figures 6 and 7). This means that 
smaller absolute deviations from pm are necessary in the 2 system than in the W system 
to excite bubbles to the same amplitudes. The same is true when comparing excitations 
by increased or decreased ambient pressure in the Y system. In this case, when the length 
of the interval AT, equals approximately one half of the oscillation period Tyodr the 
amplitude of oscillations after the bubble is released is even larger than that in the driving 
phase. Finally, the excitation by tension seems to be the most effective one: the amplitude 
increases without restrictions with an increase in the tension pressure Ap* as well as in 
the length of the interval AT,. Thus, excitation for larger amplitudes can be accomplished 
by this technique relatively easily. 

It was shown that each excitation system has its own inherent measure of oscillation 
intensity. However, there is an obvious need (e.g., for the purpose of comparison) to use 
one universal measure. Such a universal measure can be chosen in several ways: e.g., it 
can be one of the natural measures P*, or P* ,,,, or some significant wall position such as 
Z,, W,, etc. Here the measure A = YM = l/Z, was chosen because it is easy to use and 
it allows a quick interpretation (and comparison) of results in cases of both free and 
forced, and linear and non-linear, oscillations. 

From the point of view of evaluating experimental data the Z system proves to be 
advantageous and hence its widespread use is fully justified. However, when considering 
the proper initial conditions in theoretical computations (e.g., the initial temperature, or 
the upward velocity of the bubble) the particular way the bubble arrived at 2, must be 
considered. Unfortunately, there are not many studies on bubble dynamics in which a 
particular excitation technique has been specified. From the few works where this has 
been done one can mention at least those of references [22] and [23], in which the bubble 
growth due to a tension pulse was studied. 

The physical differences among the three excitation techniques can be best seen when 
considering the temperatures the gas inside the bubble attains during oscillations. Suppose 
the initial gas temperature is equal to the liquid temperature at infinity, 0, (usually the 
room temperature). Then in the case of excitation by decreasing bubble energy the gas 
temperature will always be equal to or higher than the room temperature and it will 
oscillate between the minimum temperature 0, = O,, when Z = Z,, and a maximum 
temperature 0, = 0,Z~3’y-“, when Z = 2, (Figure 1). 

On the other hand, in the case of excitation by increasing bubble energy the gas 
temperature will always be equal to or lower than the room temperature. It will oscillate 
between the maximum temperature 0, = @,, when W = W,,,, and a minimum temperature 
0, = @,wz’Y-l), when W = W, (see Figure 2). 

Finally, in the case of excitation by a transient change of the ambient pressure, when 
the bubble is released the gas temperature will oscillate around the room temperature. It 
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will attain a minimum value 0, = 0, Yz3(y-1), when Y = YM, and a maximum value 
OM = 0, y;3(3(y-‘1, when Y= Y,,, (see Figures 3-5). 

In order to illustrate these formulae one can consider a simple example. Suppose that 
y = 413, 0, = 300 K, and R,/R, = 10. Then in the first case one has Z,,, = ‘1, 0, = 300 K, 
and 0, =3000 K. In the second case one has W, = 10, 0, = 300 K, and 0, = 30 K. 
Finally, in the third case, if one further assumes that YM = 2 and Y,,, = 0.2 (which gives 
the required ratio R,/R, = IO), one obtains 0, = 150 K and OM = 1500 K. 

Hence, whereas in experiments with evacuated glass spheres [9, lo] it has been possible 
to observe light flashes due to the gas ionization (sonoluminescence), these light flashes 
should not be seen (providing the thermal theory of sonoluminescence [l] is correct) 
in experiments with pressurized glass spheres [ 141, even if the ratio R,/ R, is maintained 
to be the same in both experiments. 

Closely related to the gas temperature is the speed of sound in the gas. In order to 
examine a possibility for development of converging spherical shocks in the bubble 
interior, the sound speed has been studied in great detail [24]. Again, distinct differences 
among the various excitation techniques were revealed. 

Another difference among the three techniques concerns the maximum attainable 
amplitudes of the bubble oscillations. Some difference between the excitation methods 
can already be seen in Figures 6 and 7, but this difference becomes much more distinct 
for higher and lower initial pressure P& and P*,, respectively, than for those considered 
here. For those higher and lower initial pressures, however, computations can be perfor- 
med only with models assuming compressible liquids and therefore the author proposes 
to discuss this question elsewhere. 

Though models based on the assumption of liquid compressibility would give more 
correct results [25], for this study Rayleigh’s model has been deliberately chosen, and 
hence a non-compressible liquid has been assumed. The advantage of such an approach 
is apparent in the much simpler derivations of the equations of motion. For example, 
in the case of excitation by pressure change the derivation of the equation of motion 
represents, due to the scattering of the incident driving wave on the spherical bubble, a 
very complicated task. Another advantage appears to be much more transparent relations 
among Ap*, ATy and A in the case of excitation by a pressure pulse. Finally, much 
simpler notation can be used in connection with non-dissipative models. 

An obvious disadvantage of such an approach is the absence of radiation damping in 
Rayleigh’s model. To minimize the consequent error only bubbles oscillating with moder- 
ate amplitudes (Ac2) have been studied, deliberately [25]. 

The reasons why the derivation of the otherwise well-known equations of motion have 
been included in this study are briefly as follows. First it was desirable to show the close 
analogy between the mathematical formulation and the experimental techniques. Second, 
the designation of the particular excitation method can be best traced from the mathemati- 
cal description of the processes studied (e.g., at the time t = 0). Last but not least the 
author believes that completeness and clarity of the presentation are gained thereby. 

It has been assumed that no evaporation or condensation takes place during the bubble 
oscillations. Evidently, as long as the ambient pressure is above the liquid vapour pressure, 
this assumption will not be violated. It is the author’s opinion that even if evaporation 
or condensation occurs the wall motion of the gas bubble (oscillating with a moderate 
amplitude) will be little influenced. However, for larger amplitudes the speed of condensa- 
tion may be a limiting factor. 

There is a very important class of so-called vapour bubbles which are supposed to 
contain only the vapour of the surrounding liquid. The importance of the vapour bubbles 
follows from the role they play in cavitation and boiling [26]. Excitation of these bubbles 
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has not been considered here, though the author believes that a classification scheme, in 
many respects similar to that presented here, may also be devised for them. 

REFERENCES 

1. R. HICKLING 1963 Journal ofthe Acoustical Society of America 35,967-974. Effects of thermal 
conduction in sonoluminescence. 

2. R. HICKLING and M. S. PLESSET 1964 Physics of Huids 7, 7-14. Collapse and rebound of a 
spherical bubble in water. 

3. Y. TOMITA and A. SHIMA 1977 Bulletin of the Japan Society of Mechanical Engineers 20, 
1453-1460. On the behavior of a spherical bubble and the impulse pressure in a viscous 
compressible liquid. 

4. H. J. RATH 1979 Acustica 43, 241-246. The kinematics of spherical cavity gas-bubbles and the 
problem of cavitation thresholds in a compressible fluid. (in German.) 

5. L. SAMEKl980 Acta Technica CSAV 25,694-705. Two remarks on the dynamics of a cavitation 
bubble. 

6. S. FUJIKAWA and T. AKAMATSU 1980 Journal of Fluid Mechanics 97, 481-512. Effects of the 
non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a 
bubble in a liquid. 

7. LORD RAYLEIGH 1917 Philosophical Magazine Series 6,34,94-98. On the pressure developed 
in a liquid during the collapse of a spherical cavity. 

8. K. VOKURKA 1985 Czechoslouac Jcurnal of Physics B35, 28-40, 110-120, 121-132. On Ray- 
leigh’s model of a freely oscillating bubble. I. Basic relations. II. Results. III. Limits. 

9. J. SCHMID 1962 Acustica 12, 70-83. The gas content and luminescence of a cavitation bubble 
(model experiments with glass spheres). (In German.) 

10. H. M. MCILLER 1965/66 Acustica 16, 22-33. Experiments on light emission from bubbles 
imploding in liquids (model experiments on sonoluminescence). (In German.) 

11. R. J. URICK 1963 Journal of the Acoustical Society of America 35, 2026-2027. Implosions as 
sources of underwater sound. 

12. M. ORR and M. SCHOENBERG 1976 Journal of the Acoustical Society of America 59, 1155-l 159. 
Acoustic signatures from deep water implosions of spherical cavities. 

13. M. MINNAERT 1933 Philosophical Magazine Series 7, 16, 235-248. On musical air-bubbles and 
the sounds of running water. 

14. L. E. HEUCKROTH and I. I. GLASS 1968 Physics of Nuids 11,2095-2107. Low energy underwater 
explosions. 

15. A. A. MAKSAKOV and N. A. ROI 1980 Sooiet Physics-Acoustics 26, 431-433. Efficiency of 
radiation of a compression pulse in the discharge of a compressed gas into water. 

16. R. H. COLE 1948 Underwater Explosions. Princeton: Princeton University Press. 
17. P.T. SMULDERS and H.J. W.VAN LEEUWEN 1974in Finite-Amplitude Wave Eflects in Fluids, 

(editor L. Bjprrno), Guildford: IPC Science and Technology Press, Ltd, 227-233. Experimental 
results on the behaviour of a translating gas bubble in water due to a pressure step. 

18. N. V. MALYKH and I. A. OGORODNIKOV 1980 in Cavitation and Znhomogenities in Underwater 
Acoustics (editor W. Lauterborn). Berlin: Springer, 164-169. Dynamics of a liquid with gas 
bubbles during interaction with short large-amplitude pulses. 

19. F. B. JENSEN 1974 Transactions of the American Society of Mechanical Engineers, Journal of 
Fluids Engineering Series I, 96,389-393. Shock-excited pulsations of large air bubbles in water. 

20. Y. TOMITA, A. SHIMA and K. TAKAHASHI 1983 Transactions of the American S0ciet.y of 
Mechanical Engineers, Journal of Fluids Engineering Series I, 105, 341-349. The collapse of a 
gas bubble attached to a solid wall by a shock wave and the induced impact pressure. 

21. W. LAUTERBORN 1968 Acustica 20, 14-20. Natural frequencies of gas bubbles in liquids. (In 
German.) 

22. H. G. FLYNN 1975 Journal of the Acoustical Society of America 58, 1160-1170. Cavitation 
dynamics. II. Free pulsations and models for cavitation bubbles. 

23. G. J. LASTMAN and R. A. WENTZELL 1981 Journal of the Acoustical Society of America 70, 
596-602. Perturbation corrections to the equation of radial motion of a cavitating spherical 
bubble in an inviscid compressible liquid. 

24. K. VOKURKA 1985 Acta Technica CSAV 30,585-593. On the assumption of a uniform pressure 
field in the bubble interior. 



288 K.VOKURKA 

25. K. VOKURKA 1985 (to appear) Acusfica 58. Comparison of Rayleigh’s, Herring’s, and Gilmore’s 
models of gas bubbles. 

26. M. S. PLESSET 1957 in Proceedings of the 1st Symposium on Naval Hydrodynamics, (editor F. 
S. Sherman) Washington: National Academy of Sciences, Publication 515, 297-318. Physical 
effects in cavitation and boiling. 


