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In the paper the 2nd-order periodic group pulse process is considered a statistical model of
the Barkhausen voltage. Using this model an analytical formula for the power spectrum is derived
and further specified to fit the measured spectrograms of Barkhausen noise. The results are inter-
preted with respect to the generating physical mechanism and examples of several numerical
values are given.

1. INTRODUCTION

Let us consider a ferromagnetic specimen suitably placed in the vicinity of a pick-up
coil, e.g. in its centre. If a variable external magnetic field is applied to the specimen
(this field may be produced either by the passage of a variable current through a
driving coil winding or by the movement of a permanent magnet in the specimen vici-
nity), voltage u(t) will be induced in the pick-up coil, in which two components may be
distinguished [1]:

(1) u(t) = up(t) + u(?).

The first component, uD(t), depends deterministically (generally in a non-linear
way) on the applied field. If the applied field is periodical, the component up(t) will
be represented by discrete lines in the spectrum of voltage u(t) If a ferromagnetic
material is used as a transformer core, the voltage up(t) will be a useful voltage (signal).

The second component, uc(t), is random, has a continuous power spectrum and in
the case of the mentioned transformer it represents noise that is added to the useful
voltage up(1).

This division of voltage u(t) into its components was carried out from the point
of view of the statistical dependence between an applied field and voltage u(?).
Another possible division of voltage u(r) into components takes into account the
generating physical mechanism. If thermal noise u(r) and voltage u (?) induced in
the pick-up coil directly by the change of the applied field are neglected (these com-
ponents are usually much smaller compared with the components to be regarded
further), then voltage u(f) may be divided into two components again, namely

(2 u(t) = u(t) + ug(?).
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The first component, u,(f), is generated by the irreversible jumps of the domain
walls known as the Barkhausen jumps. The second component, ug(t), is generated
by the reversible domain wall motions and by other reversible magnetizing processes
in the ferromagnetic specimen.

Both the irreversible component u,(t) and the reversible component ug(z) contribute
both to the voltage up(7) and to the voltage u(t), so that we may write

(3) ux(t) up(t) + uic(t),
(4) : “R(t) = uRD(t) + uRC(t) >

(5) “D(t) = uID(t) + uRD(l) 5
(6) uc(t) = uyc(t) + ugc(t) .

Equations (1)—(6) will be used to define several terms. The voltage u,(t), which is
generated by the Barkhausen jumps, will be referred to as the Barkhausen voltage.
According to equation (3) this voltage has two components, the deterministic one
u;p(t) and the random one u;(¢). The random component u,(z) will be referred to,
in accordance with the established tradition, as Barkhausen noise [1, 2]. Let us
remark that it is not possible to separate the two components u,() and ug(r) one from
the other easily (if ever) during the measurement. Thus in experiments it is the com-
ponent uc() that is analysed as “Barkhausen noise” and not the uc(t).

In this paper we shall be concerned with the Barkhausen voltage u,(t) only. During
an irreversible domain wall jump a voltage pulse is induced in the pick-up coil.
As Barkhausen jumps occur at random in time and space (Within the specimen
volume) and as volume participating in a jump is also random, the Barkhausen
voltage is formed of a random time sequence of random voltage pulses. Therefore
pulse random processes are exclusively used as Barkhausen noise statistical models.
The simplest model is based upon the homogeneous Poisson pulse process (the shot
noise model) [3]. Due to its simplicity this model is easy to work with; however,
it approximates Barkhausen noise only very roughly because it does not consider the
observed pulse clustering [4—6]. This pulse clustering was first taken into account
by Mazzetti and Montalenti [ 7], who approximated Barkhausen noise by an aperiodic
pulse process with an attractive correlation between pulses'). In this paper the 2nd-
-order periodic group pulse process will be used as a Barkhausen voltage modelz).
This process represents further generalization of the 1st-order group pulse processes
studied in papers [8] and [9].

1) This and some other terms from the theory of random pulse processes are defined in papers
[8, 91.

2) The term “‘the order of the group pulse process” is used here for the first time and therefore
it deserves some explanation. As the Oth-order pulse process we denote such a process at which
no systematic pulse clustering occurs. If the pulse groups occur, we shall speak about the Ist-order
group pulse process and if the group clusters occur, the process will be of the 2nd-order.
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Understanding the Barkhausen voltage may be useful for several reasons. First,
the Barkhausen pulses represent a unique means for a physicist studying the processes
inside the ferromagnetic material and as such they have been used in basic physical
research for a long time [4, 10, 11]. However, this feature of the Barkhausen voltage
seems to be equally useful in applications for nondestructive testing of materials
[12—14]. Finally, Barkhausen noise may be a limiting factor in increasing the sensi-
tivity of ferromagnetic devices and here good understanding of the processes involved
is also necessary [15].

2. STATISTICAL MODEL OF THE BARKHAUSEN VOLTAGE

Let us apply a periodic magnetic field H(t) to a ferromagnetic specimen, so that
the specimen is periodically taken through the hysteresis loop. As was said above,
during irreversible jumps of the domain walls voltage pulses are induced in the pick-up
coil. These pulses may occur isolately; however, they occur more frequently in groups.
The mean density of groups and the mean number of pulses in groups are not uniform
during the magnetization cycle; the greatest groups and the greatest density of the
groups occur in the steepest part of the hysteresis loop, that is in the surroundings
of the coercitive field + H,. When the direction of magnetization is reversed the polari-
ty of induced pulses changes simultaneously. This brief description was freely adapted
from the book by Bittel and Storm
[1] and the physical processes

described above are schematically
/ shown in fig. 1.
Hm~He

ly taken through the hysteresis loop (sche-

matically). a) Hysteresis loop. b) Time

varying applied field. c¢) Barkhausen
voltage.

(t) [ ml‘

D .
Fig. 1. Barkhausen voltage induced in a

G = ﬂrm m M’ pick-up coil when a specimen is periodical-
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As indicated in fig. 1, the clusters of pulse groups occur in the neighbourhood of
the points + H, and because of the periodicity of the function H(¢) these clusters will
also occur “periodically’ along the time axis. The polarity of pulses in a certain cluster
is just opposite to that in the preceding one or in the following one. The course of the
component up(?) is plotted by the dashed line in fig. 1.

Fig. 2. Numbering of pulses, groups and
clusters of Barkhausen voltage.

1st group Pth group

SO R — _— ey _
-1st cluster Oth cluster 1st cluster

To be able to describe this sequencé of voltage pulses mathematically we shall
introduce the following terms: the pulse reference point, the group reference point
and the cluster reference point. These will be those points that will unambiguously
define the position of pulses, groups and group clusters with respect to the time axis
origin. As the pulse reference point we shall use an instant when the pulse reaches its
maximum. The group reference point will be identified with a reference point of the
first pulse in the group. Finally, the instant when an applied field equals +H_ will
be used as the reference point of the group cluster.

Let us identify the time axis origin with a certain group cluster reference point
and let us denote the clusters by the subscript k where k = 0, +1, ..., the groups in
clusters by the subscript p where p = 1, ..., P, and the pulses in groups by the
subscript n where n = 1, ..., N (fig. 2). Thus any cluster is determined by one sub-
script (k), any group by two subscripts (kp) and any pulse by three subscripts (kpn).
The number of groups in the kth cluster is then P, and the number of pulses in the
pth group of the kth cluster is N,

The form of each pulse may be approximated analytically by a certain time func-
tion f,,,(#), which may in general differ for each pulse.

Let us denote by ¢, the distance of the nth pulse in the pth group of the kth
cluster from the reference point of the pth group in the kth cluster and by 4, the dis-
tance of the reference point of the pth group in the kth cluster from the reference point
of the kth cluster. Then the position ¢, of the kpnth pulse with respect to the time
axis origin equals (fig. 3)

(7) tlltpn = kTO ~+ )*kp + (pkpn .

The functions fj,,(¢) and the variables @y, A, Ny, and P, are random and thus
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their complete statistical description is given by their distribution function. From
the statistical point of view this distribution function represents the maximum infor-
mation we may obtain about the Barkhausen voltage and it is therefore desirable
to obtain its best possible estimate. This estimate has not been determined experi-
mentally in full extent yet; however, in some works partial results, as the distribu-
tion of time intervals between pulses [5] and the distribution of pulse heights [4],
were reported. In this paper we shall attempt to obtain some information regarding
the distribution function by analysing the power spectrum of the Barkhausen
voltage. A similar approach may be found in papers [1-3, 7, 15—19].

urlt) tin

L

0 Prpn t
Akp

Fig. 3. Determination of a pulse position with
respect to the origin.

kTo

For the purpose of this analysis a statistical model of the Barkhausen voltage will
be postulated first. To make the discussion clearer we shall distinguish between the
physical reality and a mathematical model by using different terms. When speaking
about the Barkhausen voltage/noise we mean the respective part of the voltage u(t)
obtained in an experiment. On the contrary, the statistical model of this voltage/noise
will be called the random process and denoted as &(7).

To create the statistical model we shall suppose that the form of all pulses may be
approximated by the same time function f(t, a), where a is an r-dimensional random
vector of r pulse random parameters as amplitude, time constant etc. We shall sup-
pose further that all pulses have the same polarity. Then the process f(t) may be

written in the form
+ Pr. Nkp

(®) )= 2 X XSt = KTy = Ay = P> Gig)

k=—ow p=1n=1

As may be seen from the structure of the expression (8) the process &(t) represents
the 2nd-order periodic group pulse process.

Let us now suppose that the random variables a;,, @4, A, Ny, and Py are mutual-
ly independent and that the single random variables are also independent for different
values of subscripts k, p and n. Let us also suppose that the distribution functions of
these variables do not depend on the value of the mentioned subscripts. Then the
random pulse process 5(t) is fully determined by the probability densities w,(a),
wi(¢), wi(2), wy(N) and w,(P), by the function f(z, a) and by the period T,. We shall
try to find an analytical expression for the power spectrum of this process in the next
section.
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3. DERIVATION OF THE POWER SPECTRUM FORMULA

The power spectrum % (w) of the process f(t) will be determined from the formula

= 2
0 W) = fim o s
where the symbol { ) denotes an ensemble average and SK(co) is a spectrum of a reali-
zation of the process £(f) truncated in an interval (— T/2, + T/2) that fully spans (2K +
+ 1) group clusters so that T = (2K + 1) T,. We shall denote this truncated reali-
zation &x(t) and it will hold that &x(r) = &(7) in the interval (— T/2, + T)2) and &(t) =
= 0 for [t| > TJ2. The truncated realization () can be written as

K P Nip

(10) ()= 2 2 XSt = kTo = Ay — Gupus ak,,;,)-

k=—-K p=1n=1

The spectrum SK(a)) of this truncated realization may be obtained by the Fourier
transform of the expression (10). If we denote by s(w, a) the Fourier transform of
a function f(z, a), then we have

K P Nip

(11) Skl@) = Y % le(a% i) €XP [ —jo (KT + Ay + Pin)] -

k=—K p=1n=

Now we shall find the modulus squared of the spectrum Sy(w). If we denote the com-
plex conjugate by the asterisk, we may write

() W0 = 54(0) Si0) =
k——Z—K picl nNkII) I_Z— qul :Z—l: S(w akpn) (w alqM)

cexp [—jo(kTy + Ay + Orpn — 1To — Aig — Qigm)] -

From the six-fold sum terms satisfying the following conditions can be taken out

(a) k=1, p=q, n=m,
(b) k=10 p=4g,y ' n'em,
©) k=1, p+4g,

(d) k+1,

and thus the expression (12) may be rearranged to give

K Pr  Nip
(13) Se@)* = ¥ ¥ 3 |s(o, a)|® +
k=—K p=1n=1
K Py Nkp Nip

+k ZK ZI 21 Z S((D akl’n) *(CO, akpm) €Xp [_jw(q)kpn — gokpm)] +
=—Kp=1n =
n¥m
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K711 Pir-Nugw Pig s Nug

+ Z 2 Z Z z S(w akpn) *(w’ akqm)'
k=—-K p= 1;:’:211 1 m=1

. EXp [_—Jw(/lkp + ¢kpn - j'kq - q)kqm)] <+

K Pr Nip K P; Ny

F XY N T Y S0 ) 0, ).

k=—K p=1n= ll——Kq 1 m=1
ey
.exp [ —jo(kT, + Ay G L e G Prgm)] -

Now the expectation of (13) can be determined. With respect to the earlier postulated
independence and stationarity of the random variables ay,,, Qipn Axp Ny, and Py
the three-fold sum in (13) will contain (2K + 1) (P} (N identical terms of the type

(14) , {s(w, a)|*> .

The four-fold sum will contain (2K + 1) (P> {(N* — N)) identical terms of the
type ,

(15) {s(e, @)} [xo(@)]

where x,(w) is a characteristic function of the random variable ¢. The five-fold sum
will contain (2K + 1) {(P? — P)) (N)? identical terms of the type

(16) (Js(@, a)>* [ @)|* [1a(@)|?

where y;(w) is a characteristic function of the random variable 1. Finally, we may
take out the (P)? (N)? terms of the type (16) from the six-fold sum and fill up the
remaining two-fold sum so that it will be valid even for k = [. We obtain

(17) Sk(@)]*> = (2K + 1) (P <ND {s(w, a)|*> +
(2K + 1) <P) (KNZ) = ND) <s(@, @) [xo(@)|* +
+ (2K + 1) (<P%) = <PY) KN? (Js(@, a)>* [o(@)[* [al)]* +
+ (B 0 oo o) [l 3 3 exp [—oTilk — 1)] -
— (2K + 1) (PY* {NY* <[s(@, @))>* [xo(@)|? [1a(@)| -

Now we may substitute the expression (17) into (9) and take the limit for K — oo.
Using the identity

(18)  lim z Z exp [—joTy(k — )] = = i §(w — kwyg)

K- (ZK + 1) k=—Ki=—K
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the expression for the power spectrum will be obtained in the form
(19) W (@) = volP) {N) {[s(w, a)|*) +
+ 70(P) (N = (VD) (Js(@, @))>* [(@)]* +
+ vo(CP? = <BY) ANY* [s(@, @))>* [14(00)]” [1:(@)]* =
= 1o(PY Q02 (@, @) [t (@) [l +

+ Vo (PY? {NY* (s(@, a)]>? |xp(@)]? [xa(e)|? 2nki 5w — kay) .

Here vy = 1/Ty = fo, 0, = 2nf, and §(w) is the delta function.

The expression (19) is the required general formula for the power spectrum of the
2nd-order periodic group pulse process. This expression has two distinct parts: the
continuous part (the first four terms on the right-hand side) and the discrete part
(the last term on the right-hand side). Let us remark here that the discrete part origi-
nates in a periodical occurrence of the group clusters only.

4. SPECIFICATION OF THE POWER SPECTRUM FORMULA

In this section the distributions of the random variables P, N, ¢, / and the function
f(¢, a) will be specified so that it will be possible to obtain from the general expression
(19) a formula suitable for further work. To stress that we are dealing with the com-
ponent generated by the irreversible processes the power spectrum will be denoted by
the subscript L.

In applications one is usually interested in power spectrum W(a)) defined for posi-
tive circular frequencies  only. Therefore # (w) will be replaced by W(w), which can
be easily accomplished, as

(20) W(w) = 20 (), ©=0.

Let us suppose now that the random discrete variables P and N are Poisson distri-
buted, so that

(21) (N2 —(NY = {(N)? and (P?) — (P Y= {(P)>?,
Using relations (20) and (21) the expression (19) becomes
(22) Wy(w) = 295<PY KNY {|s(, a@)|*y + 2v,<P) <NY? {s(w, @)|>? |1 ()]* +

+ 205K PY2 (N2 (s, @)D ()] ()] 2n§05(w — k) .

The form of the voltage pulses induced in a pick-up coil during a Barkhausen jump
is rather complex [4]; however, here they will be to a first approximation described
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by the exponential function

23) 1t a><§“"(“’9) 20

t<0.

Here a is a random pulse amplitude and 0 is a random pulse time constant. Appli-
cation of the Fourier transformation to (23) gives

ab
1+ jwd’

(24) s(w, a) =

Let us suppose that the random variables a and 6 are mutually independent and that
their standard deviations are small compared with the mean. Then we may write
approximately
(ay* <0y?

25 {s(w, a)|*> = {|s(w, a)|>? = :
(25) [s(e, )| s, )>* = = s
To obtain an expression for the power spectrum comparable with the formula de-

rived in paper [7] it may be supposed that the random variable ¢ is exponentially
distributed, that is

(26) wi(e) = (1K@>) exp (—0[{¢D).

In contrast to the Poisson process, where intervals ¢ between neighbouring pulses
have exponential distribution (fig. 4a), it is the distance ¢ of each pulse from the group
reference point that is exponentially distributed here (fig. 4b).

P
& Er+1 P
Fig. 4. Pulse spreading along time axis. a) Homo-
“ ! ’ “ ' l" “ l l [ geneous Poisson process. b) Group pulse process
considered in this paper.
a : b :

The modulus squared of the characteristic function of the distribution (26) equals

2 — __L__
@7) @ = o

Finally, let us suppose that the random variable A has the Laplace distribution
(this distribution is considered because it enables simple graphical display)

(29) wi(2) = — exp (=A<

1
20D

1392 Czech. J. Phys. B 32 [1982]




K. Vokurka: Application of the group pulse processes ...
Then
1
29 o=

The functions (25), (27) and (29) have maxima for @ = 0 and they decrease mono-
tonously for growing w. Let us denote as w; = 1/{A), w, = 1/<p) and w; = 1/<0).
As it is always valid for the Barkhausen voltage that w; > w, > w,, it can be written
for w < w, with sufficient accuracy that

(30) s(w, @)y = <ay2 <0y,  |p(@)? =1.
Substituting (25), (27) and (29) into (22) and using (30) we obtain (v, = f, = 2f5)
_ <ay* <0y? <NY
(31) (o) = 26ty > S [1 b w2<q0>2:| "
<ay?<0y*

+ 2f2(PY2 (N)? on i 8w — k) .
k=0

(1 + ‘w2<)‘>2)2

The first term on the right-hand side of (31) represents the continuous part W;c(w)
of the spectrum, the second term represents the discrete part Wpd(w).

e T T T T T T T
I
=
~ 40F e
) Wio '
b .
= g - 10 log (f,¢P>) o
1_; é Wi¢ x
= o //‘I 10 log [<N))
] / \
™ A2 N §2
o r {/T\Tr/ . 7
e A1 Y X
= |/ %
4B i 123 Bdod % ]
Vot f, t, fy=fy £, \.
| | L 1 : : | i | 1 \‘
19359025 HEH (0% sgpliev0ds o 2108 HagP
f [Hzl

Fig. 5. Power spectrum of the Barkhausen voltage calculated for given hypothetical data. fo=

= 1/To, f; = 1)@, £, = 1/2no)), f; = 1/2n{0).

The expression (31) can be already displayed graphically. For this purpose we shall
replace, using relation 6(w) = (2r)"*8(f), w with f, because f is more common in
applications. Unfortunately, we did not find enough experimental data in the litera-
ture obtained only on one specimen and thus the following hypothetical values will
be considered: T, = 200s, (P} = 10%, (N> = 10, <0) = 1-6 ms, {¢p)> = 16 ms and
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{Ay = 20 (in fact, the values of T,, (P> and {N) are of the same order as those
given in the work [5]). Using these data the expression (31) is schematically displayed
in fig. 5 by the full line.

The values of parameters <6 and {¢) were selected intentionally in such a way as
to demonstrate some characteristic features of the expression (31) and not to fit the
measured spectrograms in every detail. Thus, for example, in experimentally found
spectrograms the level of the continuous part decreases from the frequency f, uniform-
ly. On the contrary, here the selection of parameters <6) and {¢) leads to a step in
the spectrum between the frequencies f, and f;. This was done to enable distinct
separation of the contribution due to the single pulses and due to the pulse clustering.
To fit the measured spectrograms better, it would be sufficient to choose, for example,
either <0"> = 5ms or {¢’> < 5 ms. This would give the form of the power spectrum
plotted in fig. 5 by the chain or the dotted line respectively.

5. INTERPRETATION OF THE POWER SPECTRUM FORMULA

In the preceding section we arrived at the power spectrum formula based on sta-
tistical properties of Barkhausen pulses, that is, the Barkhausen voltage was treated
on the “signal’ level and we could say only very little about the underlying physical
mechanism. It is the purpose of this section to give the derived results a certain physi-
cal meaning. Also, examples of several numerical values associated with the Barkhau-
sen effect will be given.

Let us first consider the continuous part of the power spectrum Wc(f). As indi-
cated in fig. 5, this part is flat almost up to the frequency f, and it is in this flat region
that the formula for W;(f) may be further simplified. Using relations (30) and as-
suming {N)» > 1 the expression (31) may be rearranged to give

(32) Wic = 2fo(P)y <NY2 a2 {62

This formula was apparently deduced first by Liitgemeier [6].

If the domain volume participating in a Barkhausen jump is denoted by v (Bark-
hausen volume) and the specimen volume by V, then the mean number of Barkhausen
jumps occurring during specimen magnetization from one saturation to the reversal
one is given by

(33) (Py Ny = k) VIKv)

where the factor k < 1 determines that part of the specimen volume magnetized
by the irreversible jumps.

A Barkhausen jump will cause the change 4m in the magnetic moment of the speci-
men, the value of Am being dependent not only on the Barkhausen volume v, but
also on the angle between the direction of the coil axis and the vector of magnetization
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J, in the domain and on the angle between vectors of magnetizations on both sides
of the domain wall. These angles are random variables in polycrystalline materials and
very little can be said about their distributions at present. Therefore, the following
approximate relation due to Stierstadt and Boeckh [10] will be used

(34) {dm)y = Jv).

The change in flux A9 through a pick-up coil following a change in magnetic
moment 4m at the centre of the coil is given by [4]
zAm

(35) A9 = Ju(t) dt = (—-——rz ¥ )R’

where z is the total number of terns in the coil, r is the radius of the coil and 2/ the

length of the coil.
If the specimen is placed in the centre of a long solenoid (I > r) with z, terns per
unit length, then (35) reduces to [1]

(36) Ju(t)’dt = z,Am.

In this work the pulse form was approximated by the exponential function (23).
Hence

(37) '[u(t) dt = Jf(t, a)dt = ab

and with respect to (34) and (36) we obtain

(38) (ayX(0y* = z1{dm)? = z{J3<v)?.
Thus, using (33) and (38) the expression (32) becomes
(39) Wic = 2foz1J; V<k) (N <o) .

Even if we do not have sufficient experimental data at our disposal, we believe that
it will be useful to illustrate the derived expressions by numerical example. Just as
in the preceding section, the following hypothetical data, partly taken over from [1]
and [5], will be considered: T, = 200s,z; = 10*m™', J, = 2T, V=6 x 10"® m?,
(kY =083, <Ny = 10, We = 10712 V2?5 and () = 1-6 ms. Then from equation
(39) the average Barkhausen volume is {v) = 5 x 107'* m® and from equation (33)
an average number of pulses that occur during specimen magnetization from one
saturation to the reversal one is (P) (N> = 10, hence (P} = 10*. Finally, using
equation (32) the mean pulse amplitude {a) = 6-25 uV can be obtained.

Let us now briefly consider the discrete part Wp(f). Again, for frequencies f < f;
the relations (30) can be used and thus the discrete components level will be given by

(40) Wip = 212 CPY? (NY? Cap? (67 .
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If (40) is compared with (32), it can be seen that the discrete part represents just as
useful information on the Barkhausen effect as the continuous one. Unfortunately, in
experiments it is usually either suppressed or at least omitted from analysis.

Using the values given above we obtain W, = 50 x 10712 V25, This level cor-
responds, for example, to a harmonic voltage of amplitude 4 = 7 uV. However,
it is to be noted that in contrast to the continuous part level, which is proportional
to fo, the discrete components level is proportional to fg. Therefore, if we suppose
that the means (P), (N), {a) and {6) do not vary with magnetizing frequency f,,
then the amplitude of the harmonic voltage will be fg/f, times greater for magnetizing
frequency f;. Thus, for example, while the harmonic voltage is “buried” in noise
at fo = 0-005 Hz (<a) = 625V, A = 7puV), it is about four orders greater than
the mean pulse amplitude at f; = 50 Hz ({a) = 6:25pV, A = 70 mV).

6. DISCUSSION

The expression for the power spectrum of Barkhausen noise that was derived by
Mazzetti and Montalenti [7] may be written for low magnetizing frequencies f,, and
using our symbols in the form

- 2 _ N
(41) Wic(w) = 2¢v;) {|s(w, a)]) [1 + 21 o <T>2].

Here <v,) is an average number of pulses per second (the pulse density) and <{7) is
an average group length. Mazzetti and Montalenti have not considered periodicity
in the pulse groups occurrence and therefore the term representing the line spectrum
is not present in their formula.

In the paper [9] we introduced the 1st-order homogeneous group pulse process
which is in a certain respect similar to the process considered by Mazzetti and Monta-
lenti. Assuming that the number of pulses in groups was Poisson distributed, an ex-
pression for the power spectrum of this process was derived in the form (equation

(39) in [9])
(42) W (w) = vy KN (s(w, @)>> + D KN s(w, a)[>? |1 (w)]* +
+ 2 LNY? {s(, a)| )2 2n5(w) .

This formula can be further specified in the way introduced in section 4. Using (25)
and (27) and considering the continuous part of the spectrum and w = 0 equation
(42) becomes

43) Wie(®) = 20y <N <Js(@, )2 [1 ; 1—+<wjf—><(p>z]

Here (v) is the mean group density, so that (v) (N)=<v,). If (43) is compared with
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(41), it can be seen that the two expressions differ in the value of the numerical factor
in the square brackets and in the meaning of parameters () and {¢>.

The expression for the continuous part of the power spectrum derived in this paper
has the same form as (42) or (43). In this case vo{P) (N = {v;).

Though the three mentioned processes are almost equivalent with respect to the
continuous part of the power spectrum, only the 2nd-order periodic group pulse
process incorporates the deterministic part and hence is suitable to approximate the
Barkhausen voltage. :

When forming the statistical model of the Barkhausen voltage in section 2 and
when specifying the power spectrum formula in section 4, several assumptions were
done, the most important of which concerned the polarity of the voltage pulses.
Though the Barkhausen voltage consists of clusters of alternating polarity, only
unipolar pulses were considered in this paper. This assumption influenced the form
of both the discrete and the continuous parts of the power spectrum. Thus the basic
component f, has double value (f, = 243 ) and the discrete spectrum is composed
of components kf,, where k=0, 1, 2, ... . This, however, is not true for the Bark-
hausen voltage, in which only even harmonics are present (k = 1,3, 5; ) The model
also gives the continuous power spectrum, which is flat in the lowest frequency range
from f = 0 to f = f,. This, too, is not in agreement with experimentally found facts
[2, 15], which indicate that the power spectrum grows as f2 until a frequency f; < f,.
An estimate of such a power spectrum form is plotted in fig. 5 by the dashed line.

Though a great number of works have been published on the Barkhausen effect
recently, it still remains not fully explored and understood. Similarly, the model
introduced here represents only a rough approximation and deserves further refine-
ment. Nevertheless, it is hoped that it gives more exact insight into the composition
of the Barkhausen voltage than the models used hitherto and thus makes it possible
to put more precisely formulated questions for experimental works and to interpret
the obtained results better.

Received 11. 11. 1981.
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